
Assignment 3
Machine Learning for the Quantified Self

Group99: Haochen Wang[2698251], Shuhan Pi[2689783], and Xuan Zhou[2698592]

Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam

1 Introduction

This report is about collecting self-quantified data to follow the machine learning
for the quantified self cycle. We want to use the collected self-quantified data to
train a model and use it to predict the user’s activity label. First, we describe how
we collected the data and the basic information about the dataset. In chapter
3, we describe how to process the data, including the handling of missing value
and noise. In chapter 4, we describe our handling of the data features. We then
describe how to partition the training set, the test set, and the test set. In the
last two chapters, we present our attempts to train three classification models
to predict activity labels and evaluate the findings.

2 Dataset Description

We used SensorLog to create a single user dataset with a duration of approx-
imately 25 minutes, which consisted of 5 activities: walking, climbing stairs,
putting the phone on the table, running, and taking the elevator.

After obtaining the raw data, we first performed some basic processing. We
chose three sensors: Accelerometer, Gyroscope, and Magnetometer. We used a
dataframe to divide the data by sensor and stored them in separate CSV files.
Since the data does not contain the exact timestamp of each sensor but only the
timestamp since the reboot, we use the phone’s boot time plus the timestamp
since reboot to get the exact timestamp of each Finally, we created a label CSV
file with the start and end of the specific activity time.

3 Data Pre-processing

The sensor data we have collected still exists an amount of noise, which con-
taminated our data and hind us from carrying out the machine learning tasks.
Therefore, before we perform machine learning for quantified self, we require
to preprocess the dataset to improve the accuracy of the results. Data pre-
processing consists of detection and removal of outliers, imputation of missing
values, and transformation.

2 H Wang, S Pi, X Zhou

3.1 Outliers Detection

Outliers are observations that are at an unusual distance from other values in the
data set. When we start working with data from physical sensors, we are likely
to encounter highly unlikely outliers that can affect the results of the analysis.
So we first have to take some approaches to detect these possible outliers. In this
assignment, we first consider Chauvenets Criterion. Because it can be estimated
from the normal distribution function by calculating the mean and standard
deviation of the observed data, the probability that an extreme value identical
to a suspected outlier comes from a normal dataset. Due to the higher setting
value of c, the higher probability to identify the true outlier, after several tests,
we finally discovered the criteria setting of 5 is the best choice.

In Fig 1, we can see that the Chauvenet criterion does signal outliers for the
gyroscope attribute: we found 25 outliers in gyr y, which seems significant, and
the results for the gyr x and gyr z attributes are similar to it. For acc x and
mag x, we do not see very significant outliers, this is an indication that there is
indeed a lack of very significant outliers. And by checking that the distribution
of the values follows a normal distribution, as well as from visual inspection, it
does indicate that the outliers found are appropriate. Based on this result, we
decided to remove the outliers, e.g. by replacing the outlier with an unknown
value using the Chauvenet criterion.

13:10 13:15 13:20 13:25 13:30 13:35
time

1.5

1.0

0.5

0.0

0.5

1.0

va
lu

e

outlier acc_x no_outlier_acc_x

(a)

13:10 13:15 13:20 13:25 13:30 13:35
time

3

2

1

0

1

2

3

va
lu

e

outlier gyr_y no_outlier_gyr_y

(b)

13:10 13:15 13:20 13:25 13:30 13:35
time

160

140

120

100

80

60
va

lu
e

outlier mag_x no_outlier_mag_x

(c)

Fig. 1. Chauvenets Criterion

3.2 Imputation of Missing Values

Due to the fact that the sensors did not record any information at certain time
points and our removal of outliers, it was clear that we had a large number
of missing values in our dataset, which also affected our final predictions, so
we necessarily had to replace these missing values in order to obtain reasonable
results in the next tasks. One approach we considered in our assignment is linear
interpolation, which works under the assumption that the missing values follow
a linear trend, and in these cases, we use the next or previous time point and
extrapolate the trend from these time points.

Assignment 3 Machine Learning for the Quantified Self 3

In Fig 2, we can observe the differences between before and after we impute
the missing value. We have seen the accelerometer attribute and magnetometer
attribute contain the most missing values. Also, we can see that by using inter-
polation for imputation, the data becomes more complete and it results in more
natural values. Hence, this is the most efficient method for the time series in our
dataset.

1
0
1 acc_x

1
0
1 acc_y

1
0

acc_z

150
100

50 mag_x

100
50

mag_y

13:10 13:15 13:20 13:25 13:30 13:35
time

300
250 mag_z

(a)

1
0
1 acc_x

1
0
1 acc_y

1
0

acc_z

150
100

50 mag_x

100
50

mag_y

13:10 13:15 13:20 13:25 13:30 13:35
time

300
250 mag_z

(b)

Fig. 2. Comparison of before and after Imputation

3.3 Transformation

After removing outliers and adding missing values we required transforming our
data to filter out subtle noise and identify the portion of our data that explained
most of the variance. The approach we chose in this task is principal component
analysis since we are able to use it to find the principal components that explain
most of the variance in our measurements. We applied principal component
analysis to all of our attributes, except for the labels. Since our dataset contains
only 5 activities, we decided to select 5 components and include the values of
each component for each time point in our dataset. Fig 4 presents the final
processed dataset after all the steps we just explained.

4 Feature Engineering

The purpose of feature engineering is to select and find a better feature for pre-
dictive models to be more accurate. For our assignment, we will mainly focus
feature engineering on time domain, frequency domain, clustering and overlap-
ping.

4.1 Time Domain and Frequency Domain

Because fluctuations in data and changes in measurements are potentially valu-
able for prediction tasks, to explore our dataset in more detail, we can first focus

4 H Wang, S Pi, X Zhou

on features derived from the time domain. We take the average of the standard
deviation and window size to aggregate the data in the time domain. The stan-
dard deviation accounts for the variability of the data, while the mean accounts
for general observations across past time points, which enables a more limited
effect of individual noise measurements in it. We experimented with different
window sizes 20 instances (10s), 40 instances (20s), and 60 instances (30s), and
because 60 instances (30s) have neither excessive noise nor excessive variation,
we finally choose it as the result of our project, and the Fig 3(a) shows the re-
sults. From the figure, we can conclude that the amplitude of the time domain
is compatible with the dynamic and static state of the activity

Besides the time domain, we also explored frequency domain features in
our assignment, and we choose Power spectrum entropy(PSE) and cepstrum as
metrics. PSE is used to measure the concentration of the distribution of each
frequency component in the power spectrum and cepstrum can easily extract and
analyze periodic signals that are difficult to identify on the original spectrogram.
From 3(b), we can observe that the amplitude of the PSE criterion is clearly
differentiated between stationary and non-stationary states, while the cepstrum
criterion can distinguish the amplitude changes in different activities.

1

0

acc_z

1

0
acc_z_mean_t_ws_20 acc_z_mean_t_ws_40 acc_z_mean_t_ws_60 acc_z_mean_t_ws_80

0.0

0.5
acc_z_std_t_ws_20 acc_z_std_t_ws_40 acc_z_std_t_ws_60 acc_z_std_t_ws_80

13:10 13:15 13:20 13:25 13:30 13:35
time

0

1
labelWalking labelClimbingStairs labelOnTable labelRunning labelTakingElevator

(a)

1

0

acc_z

0

1

acc_z_pse

0

1
acc_z_pce

13:10 13:15 13:20 13:25 13:30 13:35
time

0

1
labelWalking labelClimbingStairs labelOnTable labelRunning labelTakingElevator

(b)

Fig. 3. Time Domain and Frequency Domain

4.2 Clustering and Overlapping

To obtain more insights into our dataset, constructing the clusters is a good
approach. Clustering allows members of a cluster to make predictions about the
target. Since we only have a single dataset, our goal for this project is to cluster
the instances in the dataset and we will focus on the phone magnetometer. By
measuring the silhouettes, we determined that the optimal setting for the number
of clusters is k = 6. In Fig 5, we see a fairly good consistency of clustering. For
example, the yellow cluster appears to contain a large number of labeled points
for taking the elevator, and climbing stairs are distributed in large amounts in
the blue and green clusters. It follows that clusters and activities of clusters are
not randomly distributed.

Assignment 3 Machine Learning for the Quantified Self 5

1
0
1

acc_x acc_y acc_z

2.5
0.0
2.5

gyr_x gyr_y gyr_z

200
0 mag_x mag_y mag_z

0.5
0.0
0.5

pca_1 pca_2 pca_3 pca_4 pca_5

13:10 13:15 13:20 13:25 13:30 13:35
time

0

1
labelWalking labelClimbingStairs labelOnTable labelRunning labelTakingElevator

Fig. 4. Dataset after Processing

mag_x

160 140 120 100 80 60
mag_y

80
60

40
20

m
ag

_z

340

320

300

280

260

labelWalking
labelClimbingStairs
labelOnTable
labelRunning
labelTakingElevator

Fig. 5. K-means Clustering

As for overlapping, since after feature engineering, there are 939 instances
with 121 features, they are highly correlated, which may cause over-fitting.
Therefore, we usually set a maximum overlap for the window and accordingly
remove instances that do not satisfy this criterion. The window size in our as-
signment is set as 0.95, the reason is that the amount of data is limited and we
allow some degree of overlap.

5 Data Preparation

5.1 Feature Selection

By now, we have 121 features in our dataset after feature engineering. Use-
less features would have a severe impact on the performance of our learning
algorithms.[4] Therefore, we are going to shrink the number of the features to
train. We select the attributes we are going to use to predict the activity by the
forward selection.

One simple decision tree with at least 50 sample leaves is applied to find im-
portant features. The procedure of feature selection is essentially some machine
learning tasks with different features to input. In the forward selection, we use
70% of the dataset for training and the rest 30% for testing. We choose to use
the simple decision tree because it is the base learner of one of our models.

The impact of adding the best features iteratively for 100 features is shown
in Fig6. We can find that after 4 features the accuracy can reach the highest and
keep steady for a while. However, with over 75 features, the accuracy begins to
go down and swing with the number increasing. This is a good example to show
the severe impact on the performance. Therefore, we choose the first 7 most
important features to train in the next section.

5.2 Dataset Splitting

We can now have 939 instances with 7 features and one label. Because of the
setting of window size in the feature engineering, 21 instances are containing

6 H Wang, S Pi, X Zhou

0 20 40 60 80 100
number of features

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

Fig. 6. Features Forward Selection

RNN(LSTM) RandomForest Benchmark
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Fig. 7. Accuracy of the models

some null values at the beginning of the dataset. They have to be omitted or
deducted. Thus, the total amount of instances in the dataset is 918.

For reasonable in-sample error and out-sample error, the dataset is split into
a training set which takes 80% of the data having 734 instances, and a testing set
which takes the rest 20% with 184 instances. In this way, it can help us to know
the performance and avoid overfitting as well. Here we deploy two approaches
of learning algorithms.

For the time isolated method, random forest, we split the dataset into the
random sample. It can make sure that the labels are represented equally fre-
quently in both the training set and the testing set. Thanks to the nature of
the random forest, the scores of samples out of bags are used to evaluate the
performance. With such nature, there is no need to especially implement cross-
validation because of the existence of out-sample instances in bootstrapping.

For the time-related method, recurrent neural network, we split the dataset
with the time order. We take the first 80% of the data directly as the training
set. And 33.3% of it is used as the validating set. The last 20% of the data is
the testing set.

6 Models

As we mentioned before, our machine learning task is to do classification on the
activities. We build three models for the task. They are random forest which
is without time notion, recurrent neural network(LSTM) which is with time
notion, and a simple decision tree which serves as a benchmark. We are going
to detailedly discuss this in this section.

6.1 Random Forest

Random forest(RF) uses a decision tree as a base learner and builds a bagging
aggregation.[1] Several base decision trees can be integrated or aggregated into
a final learning model.[2] It is the reason we exploit the simple decision tree to
select important features. It can effectively boost performance. That is also why
we use a decision tree as a benchmark method later.

Assignment 3 Machine Learning for the Quantified Self 7

To be specific, there are 7 features in the initial. As illustrated before, the
processed data contains the values representing principal components, time do-
main, frequency domain, and clustering information. We try to find the best
parameter to regularize these values. We decide to use 0.001 which is the best
regularization parameter among 0.0001, 0.001, 0.01, 0.1.

Besides, the number of estimators (trees) is 50. The maximum depth is 10.
The number of minimum samples leaves is 2. The criterion of information gain
is gini method. All the above parameters are concluded from the grid search,
which can pick up the combination of parameters leading to relative best per-
formance. The accuracy of out-of-bag instance is used to show the performance
when training, the same function as validation. The accuracy of the testing set
is used to evaluate the random forest model performance in Section 7.

6.2 Recurrent Neural Network

Quantified-self data, in this project the sensory data from our daily activities
with labels, must be related to time sequence. The activities together with sen-
sory data could be influenced by the previous states. In order to capture the
features of such sequence, we propose a learning model with time notion, re-
current neural network (RNN). We use one of its famous varieties, LSTM (long
short-term memory).

Considering the past sequences of our data are not short, LSTM might per-
form better at storing and processing such longer sequences.[3] From the data
preparation in Section 5, we use these 7 features for RNN to train. The data
splitting is according to Section 5. Since from the same dataset and classification
task, the regularization is the same as what we have done in the random forest
model.

For the architecture of RNN, We deploy two layers of LSTM and one fully
connected output layer in our model. The two LSMT layers are 256 cells and
64 cells respectively with an activation function of tanh. And a dropout layer
of 0.3 is followed each LSTM to reduce the potential of overfitting. The fully
connected (dense) layer is of 5 neurons, which represent five classes of the activ-
ities. The activation function of output is Softmax. The metric to optimize is
accuracy, which is common for classification. When training, the validation with
the validating set, stated in Section 5.2, can indicate the performance and avoid
overfitting. Additionally, we do not use early stopping because the number of
the epoch is set to 20, not big.

6.3 Benchmark

To prove the effectiveness of our models and compare them, we implement a
benchmark model of one simple decision tree. The reason we use the simple
decision tree as the benchmark model is that we used it in feature selection
and the base learner of random forest, which fits our goal of evaluation. The
performance of the benchmark model is a baseline in evaluating the above two
models.

8 H Wang, S Pi, X Zhou

The benchmark is straightforward both in feature selection and parameter
setting. The features we use are the original data from the accelerometer, gy-
roscope, and magnetometer with activity labels. The maximum depth is 3. The
minimum sample leaves is 1. The information gain is gini method, which keeps
consistent with the random forest model.

7 Results and Evaluation

The results for the models are shown in Fig9 and Fig7. From the table, the
classification task is solved by high-performance machine learning methods. Fig8
is the confusion matrix for the prediction of the random forest model. With
a total of 184 testing instance, there is only one incorrect prediction that it
misclassifies taking elevator into running.

lab
elC

lim
bingStair

s

lab
elO

nTab
le

lab
elR

unning

lab
elT

aki
ngElev

ato
r

lab
elW

alk
ing

Predicted label

labelClimbingStairs

labelOnTable

labelRunning

labelTakingElevator

labelWalking

Tr
ue

 la
be

l

24 0 0 0 0

0 50 0 0 0

0 0 70 0 0

0 0 1 5 0

0 0 0 0 34

confusion matrix

0

10

20

30

40

50

60

70

Fig. 8. Prediction with RF

Model Mean Accuracy

Random forest 99.239%

RNN(LSTM) 99.565%

Benchmark 80.978%

Fig. 9. Accuracy of the models

From Fig7, we can clearly observe that our recurrent neural network model
and random forest model are valid models to realize the classification task.
Compared with the benchmark, we can say that these two models are much
more accurate than the benchmark. From our observations, we conclude that
the RNN(LSTM) is a better model to use for our dataset since it is useful in
time series prediction and the features could remember previous input. The ran-
dom forest model, on the other hand, does not consider the time relationship
among the instances and is, therefore, less accurate. However, it even shows
better performance than the benchmark for the dedicated selection of features.

8 Conclusion

In this assignment, we performed a machine learning for quantified self circle on
our collected sensory data, we pre-process the collected data including assign-
ing the labels, detecting outliers, imputing missing values and transformating
then. Then we performed feature engineering on the processed data to convert
into useful features. Using RNN and random forest models are used to predict
activities and we evaluate performance of the models. We also found that self-
quantified datasets are not commonly available online, but that the data and
information collected by sensors can predict many interesting things.

Assignment 3 Machine Learning for the Quantified Self 9

References

1. Breiman, Leo. ”Random forests.” Machine learning 45.1 (2001): 5-32.
2. Breiman, Leo. ”Bagging predictors.” Machine learning 24.2 (1996): 123-140.
3. Olah, Christopher. ”Understanding lstm networks.” (2015).
4. Hoogendoorn, Mark, and Burkhardt Funk. ”Machine learning for the quantified

self.” On the art of learning from sensory data (2018).

	Assignment 3 Machine Learning for the Quantified Self

