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Abstract

Basic level, a psychological term, the core idea is that in a hierarchy of con-

cepts there is one level of abstraction that has special significance for humans to

perform and react quicker and more accurately than at superordinate or subor-

dinate levels. The master thesis aims at detecting the basic level in a hierarchy.

The goal is to come up with a relatively reliable method to predict the basic

level concepts from natural language corpora and synthetic features. The syn-

thetic features can be from the lexical and hierarchical structure, frequency in

corpora, and semantics from word embeddings and generated features. Using

knowledge and techniques in machine learning, natural language processing,

and statistics, the thesis answers the research question that to what extent the

basic level can be learned from natural language corpora with various charac-

teristics and synthetic features. This thesis proposes a method to predict basic

level concepts in a hierarchy. We find the features of large size of written cor-

pora to general audiences can enhance the performance of predicting the basic

level. Using the method and the best setting of the features, we reach the

best Cohen’s kappa of 0.898 to predict the basic level and create a dataset of

predicted basic level concepts in WordNet under entity.n.01.

Keywords: Basic-level categories, Machine learning, Natural language pro-

cessing, Semantics, Psycholinguistics
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1

Introduction

Basic level, also known as basic-level categories, is introduced by Rosch et al. in 1976. It is

a terminology in psycholinguistic literature. The basic level is the most general categories

for which a concrete image can be formed. And it is hypothesized that the definition

of concrete categories during child development is based on semantic features of each

individual in the child’s perception (5). The core idea is that in a hierarchy of concepts

there is one level of abstraction that has special significance for humans to perform and

react quicker and more accurately than at superordinate or subordinate levels.

Knowledge organization systems (KOS) are widely utilized by applications on the web.

They organize and provide an abundance of information for applications. KOS requires

the categorization of concepts and explicit semantic relationships among them to represent

the knowledge. Especially for Semantic Web and its technologies, it is useful to turn to

cognitive models and theories to replicate human thoughts to categorize concepts on the

web (6). The basic level theory is one of the best categories for both human understanding

and KOS organizing.

Research and applications derived from the basic level are rich and promising. Applica-

tions using knowledge bases could improve their user interfaces if they adopt appropriate

basic-level categories. More exactly, if applications can detect concepts belonging to the

basic level, they would provide more efficient service and a better user interface. More-

over, many methods in modern NLP and computer vision research have turned out that

the basic level is useful to improve performance. Some published research includes ontology

generation (7), word sense disambiguation (8), and visual object recognition (9).

However, the concepts belonging to the basic level are not labeled originally, and there

lacks a general and robust method to detect the basic level categories from knowledge

bases. Therefore, this project aims at the topic of basic level detection. The goal is to

1



1. INTRODUCTION

come up with a relatively reliable method to predict the basic level concepts from corpora

with various characteristics and synthetic features. The corpus characteristics contain

the discourse type, target audience, and size of a corpus. The synthetic features include

structural, frequency, and semantic features.

In overview, basic level detection is a classification task in machine learning. Because

basic level concepts usually take only a small part of all the synsets, this is an imbalanced

classification task. We consider machine learning algorithms, Random Forest with the

SMOTE algorithm and Support Vector Machine. Some features for the machine learning

algorithm are inherited from Henry’s (10), and newly generated by techniques from natural

language processing. Frequency could be an important feature to predict the basic level.

People often choose basic level concepts to describe an object and the basic level should be

frequent in the language (5)(1). Google Books Ngram Corpus as a source is used to extract

the frequency features. The semantic features are from Word2vec and BART. The features

used for training the classifier are aggregated and selected by feature engineering. The

statistic tests could give significance to the hypotheses which provide convincing evidence

to make conclusions. Wilcoxon rank-sum test, a non-parametric statistical test, is carried

out. Finally, we use the synthetic features with the best performance setting to detect the

basic level in a large-scale hierarchy.

In this thesis, we investigate the performance of corpus characteristics and the synthetic

features in predicting the basic level. An end-to-end method from a concept in a hierarchy

to its label whether it is the basic level is proposed. Using this method, we detect basic

level concepts under entity.n.01 in WordNet. The codes, the related corpora, the generated

cues of concepts, and the predicted basic level concepts are made available in GitHub1.

The main research question is that to what extent the basic level can be learned

from natural language corpora with various characteristics and synthetic fea-

tures? To be specific, three sub-research questions will be answered:

• To what extent the discourse type and target audience of a corpus considering its

size would affect the performance of predicting the basic level?

• What new features concerning semantics can be generated to help improve the per-

formance of predicting the basic level?

• How much would corpus characteristics and synthetic features improve basic level

detection in a large-scale hierarchy?

1https://github.com/DanferWang/Basic_Level_work

2
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2

Background

2.1 Literature Study

2.1.1 Basic Level Categories Theory

Basic level as a level of abstraction in taxonomy is observed in 1958 by psychologist Roger

Brown. He postulated that there exists a preferred level of names that is the most useful in

most contexts (11). However, Brown did not clearly define this level nor give a description

of the names that can belong to it. A formal name for basic-level categories and a system-

atic theory of basic-level categories are defined by psychologist Eleanor Rosch in 1976 (5).

Research on the basic-level categories has been conducted across diverse disciplines. Stud-

ies in psychology, anthropology, linguistics, and library and information science have more

or less covered the theory of basic-level categories to measure perception, communication,

and behavior (12).

Besides Brown and Rosch, linguist George Lakoff raised a research question that aims

to study the human mind through the categories of language. He demonstrates that basic

level categories are ’human-sized’ and depend upon human interactions with objects in a

category (13). Rebecca Green stated in the field of library and information science that

concepts in basic-level categories have been demonstrated to have more possibilities to be

shared across classificatory systems than others by (14).

Although there are many publications on basic level categories, they hardly give a specific

mathematical definition to the basic-level categories. Most of the related work describes

the basic level categories theory with an intuitive idea, such as categories containing the

most information or people would react fast to these categories. In our work, we give a

formal definition of the basic-level categories from semantic and quantitative aspects. The

semantic one is the cognitive economy which explains that people tend to make less effort

3



2. BACKGROUND

to understand and react to the basic-level categories. The quantified one is cue validity (5)

which describes how much information is gained by people from the basic-level categories.

In this way, basic-level categories, a terminology of psychology, can not only be described

by a level of abstraction, but measured by a mathematical formula as well. The cognitive

economy and the cue validity are essentially the same and used to define the basic-level

categories.

Some terminologies about basic level categories are similar to each other. The basic

level is a level at which concepts belong to basic-level categories. Therefore, basic level

and basic-level categories have the same meaning in this paper.

2.1.1.1 Cognitive Economy

Humans perceive the real world with correlational structures. The perception is from

cognitive processes which tend to minimize exertion and resources cost during processing.

Further, cognitive economy concerns the relevance and simplicity of a categorization scheme

and knowledge representation (15). From the aspect of cognitive economy, the basic level,

as a criterion of binary classification, can result from a combination of the following two

principles (5).

1. Predictable property. Concepts in the basic level would have many predictable

properties which can be derived from each other. The attribute of predictable proper-

ties leads to forming a large number of categories. There are discriminations in each

category and one of them holds fine enough differences to distinguish each concept

belonging to it. This category is likely to be the basic level.

2. Relevant differentiation. The categorization scheme aims to reduce infinite differ-

ences to an appropriate degree of proportions among concepts within one category.

The appropriate degree of proportions behaviorally and cognitively depends on the

purposes. Otherwise, it would not differentiate among concepts unless the differen-

tiation is relevant enough with respect to the purposes.

The two principles look contradictory to how humans perceive the world with catego-

rization. They emphasize an appropriate degree of differentiation according to human

interaction with the world under different situations. For example, assuming a concept

hierarchy (1) shown in Figure 2.1, the concept of cat and the concept of dog can be in

the basic level according to the principles of cognitive economy. In the hierarchy, con-

cepts higher than cat and dog are more abstract whose properties can not be the same

4



2.1 Literature Study

Animal
Consume organic material 
Breathe oxygen 
Use metabolic exchange
Reproduce sexually

Mammal
A neocortex 
Fur or hair 
Three middle ear bones

Carnivore Eat meat 
Hunting

Cat

Flexible body 
Sharp teeth 
Retractable claw 
Good night vision 
Meow, purr, trill, hiss 
Catches mice 
Movable whiskers 
Good balance 
Hunts alone

Dog
Attuned to human 
Herding 
Brown eyes 
A tail used to communicate 
Barks 
Pet
Good sense of smell

Persian Long hair 
Flat nose 
Round face

Bengal Spotty coat 
Energetic 
Golden
shimmer

Poodle Curly fur 
Slim legs

Bulldog Winkled face 
Pushed-in nose 
Resolute

...

...

...

... ...

Figure 2.1: Concept hierarchy with properties example (1)

as predictable as cat and dog. Similarly, concepts lower than them are too specific whose

properties indicate only slight differentiation. The concept of cat and the concept of dog

both hold as many predictable properties as possible to distinguish them from the others

(Predictable property). Meanwhile, a category of the concept of cat and the concept of

dog can be the most appropriate proportions of differentiation for a general perception by

humans (Relevant differentiation).

By basic-level categories, concepts more abstract or general than those in basic level are

superordinate concepts, i.e. hypernyms in a hierarchy. Concepts more specific than or

below the basic level are subordinate, i.e. hyponyms in a hierarchy. With the basic level

theory, humans can sketch the real-world correlational structures.

5



2. BACKGROUND

2.1.1.2 Cue Validity

Cue validity, val(cue), is based on conditional probabilities which typically include P (BL|cue)
and P (BL|cue) terms. P (BL|cue) is the probability of a concept is IN basic level given

the cue, while P (BL|cue) is the probability of a concept is NOT IN basic level given

the cue. Qualitatively, val(cue) goes up when P (BL|cue) increases and(or) P (BL|cue)
decreases. However, there is no commonly agreed upon mathematical formula to calculate

the cue validity. BEACH proposed probabilistic cues (Equation 2.1) to make inferences

about objects’ category (16). Here, the object can be seen the same as the concept in this

paper.

E(k) =

∑n
d=1 P (k|d)

n
(2.1)

Where k is a specific category that one object probably belongs to. E(k) can be regarded

as a possibility of one object correctly expected to be in a given category. d is a dimension

on which one object’s cue is known. n is the number of dimensions. P (k|d) is the relative

frequency with which one object’s cue on each cue dimension (16). Beach improved the

inference method in another paper. Another formula (Equation 2.2) was put forwards to

recognize, assimilate, and identify a category for an object (17).

E(c) =

n∑
d=1

P (c|k, d)
n

(2.2)

Where c is a cue value under consideration as one object’s unknown cue. E(c) is the total

evidence from the unknown cue dimension. P (c|k, d) is a probability that a cue value c on

an unknown cue dimension d is the best bet for the inference give one object’s category k

(17). Based on Beach’s study, Reed updated the algorithm to calculate the cue validity and

proposed a similar formula, Equation 2.3, which measures the cue validity by considering

the frequency and the proportion of cues in categories (18).

CV (Category_k,X) =
d∑

m=1

P (Category_k|xm)

d
(2.3)

Where k is an ordinal number of categories while m is an ordinal number of cues of X.

CV (Category_k,X) is the cue validity value of concept X. P (Category_k|xm) is the

prior probability by P = 1/(1 + F ), where F is the frequency with which the cue appears

in the category (18).

According to the definitions of basic level, a concept with a larger cue validity can be

more differentiated than others with a lower one. It is reasonable that the superordinate

concepts have fewer attributes in common to have lower cue validities. Meanwhile, the
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subordinate concepts share many attributes among siblings that lead to lower cue validities.

Concepts in the basic level maximize cue validity, in other words, these concepts reflect

the correlational structure of the real-world environment best and are identified fast for

humans.

When computing cue validity of a concept, the practical implementation does not lead

to Equation 4.2 because it contains a posterior probability that is impossible to count and

calculate for training and testing. The detail of implementing cue validity of concepts are

discussed in Section 4.4.2.

2.1.2 Random Forest with SMOTE

Basic level detection is to categorize a concept into basic level or non-basic level which

is a binary classification task in Machine Learning. Random Forest (19) with Synthetic

Minority Over-sampling Technique(SMOTE) (20) will be used as a classifier to learn from

synthetic features and to predict concepts whether are in the basic level or not.

Random Forest is an extensive version of Bagging, which is the abbreviation of Bootstrap

Aggregating. It uses Decision Tree as a base learner and builds a Bagging aggregation.

Furthermore, Random Forest introduces the random choice of attributes in the process of

training. The core concept of the fundamental method, Bagging, is sampling and training

for every subset of the attributes. They can be sampled for training a Decision Tree with a

certain number of items. The training leads to a base learner. Hence, several base learners

can be integrated or aggregated into a final Random Forest learning model.

Specifically, training a Random Forest classifier includes sampling attributes and choos-

ing an attribute. Firstly, a subset of the total d attributes is sampled for each current

node in the base Decision Tree in a bootstrap way. The size of every subset is k. Secondly,

the most optimal attributes from the subsets are chosen to generate their child nodes re-

spectively. In this way, the parameter k controls the degree of randomness introduced. In

general, according to (19), the recommended value would be:

k = log2 d (2.4)

Random Forest is relatively simple to implement and needs low computational cost.

Moreover, it has shown powerful abilities and performance in many Machine Learning

tasks. Both the self-sample perturbation and the self-attribute perturbation enable better

performance of generalization via increasing the bias of individual base learners. Therefore,

Random Forest usually converges to lower generalization errors with the increment of the

number of base learners.

7
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When training a Random Forest with imbalanced datasets, SMOTE algorithm for sam-

pling can achieve better classification performance. In general, SMOTE is a method that

oversample minority classes and undersample majority classes (20).

When undersampling the majority classes, the samples are removed at random until the

percentage of samples in the majority classes and the minority classes reaches a specified

value. When oversampling the minority classes, besides taking minority samples, it creates

synthetic examples of each minority instead of directly replicating with replacement. The

synthetic examples are calculated with the K-Nearest Neighbor algorithm. Discovering

the nearest neighbors of a minority sample, each difference between the minority and its

nearest neighbors is multiplied by a random number ranging from 0 to 1. Then, the new

examples can be added to the dataset for training which leads to a classifier having greater

decision regions but less specific than without such oversampling.

2.1.3 Word Embedding: Word2vec

Word embedding is an important technique in natural language processing that words are

mapped to vectors of real numbers. It is a necessary procedure in modeling a language and

learning features from textual data to numerical representations. Word embedding aims

to capture the meaning of a word in semantic similarity, syntactic similarity, and relations

with other words which makes natural language read and processed by computers. A well-

trained set of word embeddings place similar words close to each other in the vector space.

Based on the real-number representation of words, further computation and algorithms

can be implemented.

Word2vec (21) is one of the most popular techniques to learn word embeddings us-

ing multi-layer recurrent neural networks. There are two main training algorithms for

Word2vec, the continuous bag-of-words(CBOW) model and the skip-gram model. The

major difference between the two models is that CBOW uses context to predict a target

word while skip-gram uses a word to predict the target context. According to Mikolov

(22), the skip-gram model is more suitable for representing not frequent words. To hit

lemmas of the concepts in the dataset Section 3.2 as many as possible, a Word2vec-based

repository named ConceptNet Numberbatch1 can provide finely pre-computed word embed-

dings trained with data from ConceptNet (23) using the skip-gram model. Compared to

other pre-computed word embeddings, ConceptNet Numberbatch is able to cover most of

the lemmas in our dataset which guarantees to eliminate missing vectors as few as possible.

1https://github.com/commonsense/conceptnet-numberbatch
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Bidirectional
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Figure 2.2: Architecture of BART (2)

The vector representation with the semantics of a lemma of concepts in a hierarchy can be

looked up in the dictionary of ConceptNet Numberbatch.

2.1.4 BART

BART, Bidirectional and Auto-Regressive Transformers, is a sequence-to-sequence denois-

ing autoencoder model (2). It is one of the effective language models for text generation

and comprehension tasks, such as machine translation. By fine-tuning BART, an end-to-

end model can be trained which can learn a mapping from source English words to their

semantic features. In this paper, BART is used as a pre-trained model for tokenization

and a fine-tuned autoencoder for semantic feature generation.

The architecture of BART follows the standard Transformer (24). It is implemented

with a bidirectional encoder and an auto-regressive decoder, shown in the yellow area of

Figure 2.2. The pre-trained BART is denoising because the input training data is corrupted

text with masks(attention) and the goal is to reconstruct the text which is noticed by the

masks. Both the encoder stacks and decoder stacks contain 12 identical layers (24). The

encoder of the pre-trained BART then can be used as a tokenizer for English words. It

gives a vector of identity with an attention mask to each word or phrase which implicitly

represents the meaning.

After fine-tuning the BART with an additional encoder, named Initialized Encoder, the

new model is designed for machine translation tasks, shown in the green area of Figure 2.2.

The pre-trained BART without the embedding layer is used as a decoder. The new encoder
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is trained to map the input source text into an intermediate representation which can be

denoised by the pre-trained BART (2). The BART is fine-tuned with English semantic

feature data, to be introduced in Section 3.5. Using the fine-tuned BART, the end-to-end

model of translation can help to generate semantic features from a word. In other words,

the translation is a mapping from one concept to its semantic features. The pipeline and

detailed process of fine-tuning will be discussed in Section 4.4.2.

2.2 Related Work

2.2.1 Rule-Based Heuristics

Mills et al.(25) built a rule-based system with heuristics to identify basic level categories

automatically. Their approach is to evaluate a cumulative set of rules defined by them-

selves. The system constraints concepts are the basic level with some boundaries of the

rules. Initially, there are 52 rules in two types: filtering rules and voting rules. They

used several resources of corpora, dictionaries, and toolkit to formulate the rules. After

experiments of training and developing, there are 8 chosen filtering rules with parameters

and 4 selected voting rules left for relaxation using a greedy search scheme.

Although the system can identify the basic level with relatively high accuracy of 77.0%

and classify automatically, the data gathered was limited, 194 categories in total. For the

reason that some categories do not have corresponding synsets in WordNet, the categories

used in the experiment are even fewer, 152. Moreover, there could be many important

features ignored because of the removal of weak rules. It might not work well with concepts

outside the 152 categories because the rule-based system is trained and developed with only

100 categories. In our work, experiments are conducted with more annotated concepts, up

to 839, and have different models designed to guarantee the generalization of the method

for predicting the basic level.

2.2.2 Machine Learning-Based Classification

Recently, more related research on predicting the basic level focuses on Machine Learning.

Concepts can be categorized into the basic level or others using several kinds of classifiers.

With Machine Learning algorithms, predicting the basic level is regarded as a classification

task. Moreover, appropriate feature engineering can improve the accuracy and efficiency

of predicting.

Hollink et al. (26) aim to predict whether concepts are the basic level in a concept

hierarchy. They trained five kinds of classifiers from three types of features: lexical features,

10
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structural features, and frequency features. The classifiers are trained by Latent Dirichlet

Allocation(LDA), Decision Tree, K-Nearest Neighbors, Support Vector Machine(SVM),

and Random Forest. The lexical and structural features are extracted from WordNet (3),

while the frequency is from Google Books Ngram Corpus. They present a method to

classify concepts from a conceptual hierarchy into a basic level and non-basic level using

Random Forest. The models are trained in the setting within one domain and across

domains. The local model, whose training data is within a domain, results in the best

performance under three domains. They argue that concepts that are difficult to label for

humans are also harder to classify automatically.

The method Hollink et al. considered and the features they chose concern the structure of

concepts in a hierarchy and their lemmas morphology. The lexical features and structural

features implicitly contain some semantic relations among synsets from their hypernyms

and hyponyms. The implicit semantic relations could indicate the subordinate relationship,

however, might not be able to summarize the meanings of one concept(synset). In our work,

the semantics of concepts is explicitly represented by their cues generated by the fine-tuned

BART. The cues of a concept could explain the synset directly rather than inferred from

the subordinate relationship. The method proposed in our project adopts both the implicit

semantics from the hierarchy and the explicit semantic features by cues.

Henry (10) focuses on the features from corpora. She raises a research question that

what corpus properties are useful in predicting the basic level. It is through learning the

basic level with varying corpora of different discourse types, audience ages, and sizes in

words. She concludes that larger corpus sizes have more reliable results. And comparing

smaller samples of the same size, those containing spoken discourse and discourse directed

at children provided more reliable results than written text aimed at a general audience.

The features from child spoken corpora can be important indicators to learn and predict

the basic level.

It reveals the significance of the type and the size of frequency sources. However, the ag-

gregations of frequency features from different corpora are not the same. The performance

of accuracy for predicting the basic level is not improved significantly from these frequency

features. Compared to our work, Henry did not consider semantic features of concepts.

Chen and Teufel (1) present the first method for the detection of the basic level at

scale using Roach-style semantic features which contain cue validity, according to their

statement. They adopt three methods of generating semantic features for synsets in Word-

Net: textual features from Wikipedia pages, Distributional Memory (27), and BART. The

languages are English and Mandarin. The synthetic textual features include structural

11
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features, lexical features, Word2Vec, frequency features, cue validity, basic level page rank,

and semantic features. Support Vector Machine is used to train the classifier. We also use

BART and the cue validity but for different purposes. They used BART to compile the

synthetic texts for a better Jacquard Distance (28) and to tackle multi-language issues.

BART in our method is used to fine-tune a generator for cues of concepts. Cue validity

in Chen and Teufel’s was a feature-dependent indicator for checking the quality of the

synthetic features (1). In our work, cue validity is used to extract the semantic feature

from generated cues and represent it in a numerical way.

Although Chen and Teufel find that BART is capable of generating indicators to improve

the detection of the basic level, they might not clarify the mechanism of BART nor the

functionality of the generation. The best model in their experiments performs 75.0%

accuracy of English basic level detection and 80.7% in Mandarin on their test set. However,

the dataset only contains 433 concepts which are carefully selected and not directly from

a developed hierarchy.

2.2.3 Context-Aware Basic Level in Folksonomies

Chen et al.(7) put forward an algorithm to detect the basic level among various contexts

from folksonomies. The folksonomies contain implicit semantics from creating and manag-

ing tags in web resources annotated by users. They model instances, concepts, and context

in the folksonomies for mining semantics. Contextual category utility, inspired from cate-

gory utility(29), is proposed to predict the basic level. The modeled concepts are detected

as the basic level when they have the greatest value of the contextual category utility.

Chen et al. considered semantics when predicting the basic level and with large-scale

web resources. Basic level concepts are detected on the web where the concepts are not

organized hierarchically. The results depend on the contents and quality of the resources.

Their method is appropriate for detecting the basic level within an abundant source of

texts. However, it might be not suitable in a hierarchy because the folksonomies might

not cover all the synsets in a hierarchy, like WordNet. Moreover, due to the context-ware

method, there is no use of features from lexical, frequency, or structural characteristics.

12
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Data

3.1 WordNet

Princeton WordNet1 is a lexical database for English which organizes sets of synonyms

(3). The sets of synonyms, known as synsets, are regarded as concepts in this paper. The

canonical form or morphological form of a word from the synonyms is one of the lemmas

of the synset. The meaning of each word is named sense. By these definitions, the lexical

semantics can be described in terms of the relations by the links between the synsets.

There are over 166, 000 relations, which are represented in pairs of a lemma and a sense,

and more than 117, 000 synsets in WordNet (3).

Another important semantic relations are hyponymy and hypernymy which are the tran-

sitive relations between synsets. Hyponyms and hypernym can shape paths from the su-

perordinate to several Subordinate. Therefore, concepts in WordNet are organized in a

hierarchical structure of lexicons. Further, every synset together with its hyponyms and

their relations contain the lexical information in the hierarchy, which is used as one of the

lexical features. A hierarchy of the concepts in our annotation dataset is depicted in Figure

3.1. The synsets in light red are the domains in the dataset Section 3.2. Synsets in yellow

are the hyponyms of the domains and synsets in blue are their hypernyms. The root of

the hierarchy is the synset of entity.n.01.

As mentioned in Section 3.2, concepts to be predict can be the synsets in WordNet.

Moreover, the method proposed can be executed to detect the basic level with all the

concepts under entity.n.01. WordNet database and its API can be accessed by NLTK2

WordNet Interface3.
1https://wordnet.princeton.edu/
2NLTK: Natural Language Toolkit
3https://www.nltk.org/howto/wordnet.html
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Domain Basic level Non-basic level Total

hand tool 25 108 133
edible fruit 57 99 156
musical instrument 47 79 126
furniture 20 163 183
garment 26 215 241

Total 175 664 839

Table 3.1: Summary of Basic Level Annotation Dataset

3.2 Basic Level Annotations

The dataset where concepts are labeled with basic level or non-basic level is inherited from

Hollink et al. (26) and Henry’s research. There are three domains from Hollink’s dataset

and two domains from Henry’s. The domains are hand_tool.n.01, edible_fruit.n.01, musi-

cal_instrument.n.01, furniture.n.01, and garment.n.01 in WordNet. The labeled dataset

is called the gold standard. Originally, the gold standard labels concepts in the basic level,

or the superordinate or the subordinate of the basic level. In this paper, superordinates

and subordinates are merged into a class of the non-basic level.

Concepts in the gold standard are labeled manually by three annotators who are pro-

vided with an annotation protocol. The protocol includes instructions for this labeling

task, descriptions of the basic level, characteristics of the basic level, and how to find the

basic level in the hierarchy of WordNet. The most important part is a checklist helping

label the basic level. In addition to the checklist, the annotators may access necessary

information from Wikipedia and Google Search Engine. Using the annotation protocol,

concepts labeled as the basic level can be as close as possible to Roach’s definition of the

basic level, discussed in Section 2.1.1.

After processing the gold standard, the dataset to be used in experiments is summarized

in Table 3.1. It shows distributions of the number of concepts in each domain. The data

is imbalanced that concepts at the non-basic level are 2 ∼ 8 times more than those at the

basic level. Considering the definition of the basic level, it is reasonable that the basic

level is less but contains more information in one domain. The settings of the training set,

validation set, and testing set will be discussed in Section 4.1.
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3.3 Textual Corpora

To answer the first research question about frequency features, different resources for cal-

culating frequencies of concepts should be considered. The aim is to gather the frequency

of lemmas in each concept from different discourse types, different target audiences, and

various sizes of resources. Therefore, four corpora with different characteristics are ex-

tracted to be used as the frequency resources. Summarized in Table 3.2, they are the

KBNC, the CABank English corpus(CABNC) (30), the CHILDES (31), and the British

National Corpus(BNC) (32),

Text BNC is a British English corpus that contains around 100 million words from a

wide range of written and spoken resources. It records abundant British English from

the late 20th century and is released in 2007 as BNC XML Edition1. Approximate 88

million words of written records are extracted and marked as BNC Written corpus for the

frequency feature under a general written corpus. Meanwhile, there are around 1 million

records of them specifically for children. They are wrapped as KBNC which is a written

corpus specific to children.

CABNC is built by re-transcribing naturalistic conversations from Audio BNC, a sub-

corpus of BNC which originally contains about 7.5 million words in a type of audio. Albert

et al. converted the transcripts into CHAT files (33) and made them public open-licensed2.

CABNC initially has around 4.2 million words. However, from the latest version released

only 2.4 million words can be parsed from CHAT files by PyLangAcq3. The parsed words

compose CABNC for calculating frequencies of concepts under a general spoken corpus.

CHILDES is one of the components in the TalkBank system specific for child languages4.

16 corpora from British English consist of a new corpus, simply named CHILDES. The

new CHILDES contains conversations directed at children with around 5.7 million words

that are transcribed from audio and video. It is used to extract frequency features as the

corpus characteristics of spoken discourse specific to child audiences.

3.4 Google Books Ngram Corpus

To have a larger corpus for extracting the frequency features, Google Books Ngram Cor-

pus(Google Ngram) (34) can be another resource that is a written corpus for general

1http://www.natcorp.ox.ac.uk/
2https://ca.talkbank.org/access/CABNC.html
3https://pylangacq.org/
4https://childes.talkbank.org/
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Corpus Discourse Type Target Audience Size Approx. Description

KBNC Written Children 1 million Subset of the BNC
specific for children
target audience

CABNC Spoken General 2.4 million Re-transcribed from
a subcorpus of the
BNC

CHILDES Spoken Children 5.7 million Composed of 16 sub-
corpora

BNC Written General 88 million British English in the
late 20th century

Table 3.2: Summary of Corpora for frequency features

audiences. It is an enormous repository of printed publications. Similar to Hollink et al.

and Henry’s study, frequency features from Google Ngram could be a set of important

indicators for the classification. The corpus has three versions. We adopt in our work the

third version released in 2020. It contains millions of books published since the 1500s. Al-

though the accuracy number of tokens in the Google Ngram version 3 is not documented,

it can be sure that the amount is larger than the second version, which is over 468 billion

tokens (35). And it was updated by billions of records annually from 2012 to 2019. The

n-gram data used is all the entries in Google Ngram Version 3 from 1500 to 2019.

Google provides a web-based service to search the frequencies of words by years on

Google Books Ngram Viewer1. For every concept in the dataset, lemmas of the synset are

listed by the NLTK WordNet library correspondingly. It can include all the words within

the concept so that the frequency of a concept is more complete to represent its feature.

Unfortunately, there is no official API for querying frequencies in a large-scale productive

mode. The frequency data has to be obtained by a web crawl that posts requests for the

frequency of a lemma and gets its response. The response can be parsed and analyzed to

have valid frequency data. The returned data contains frequencies of a word(lemma) in

the given period of years.

However, it is found that continuous requests to the Google Ngram Viewer would trigger

an exception of 503 Service Unavailable and respond to the null data. The reason is that

Google set a limitation of request times to protect its server and services. The policy of the

1https://books.google.com/ngrams
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Google server request limit is discovered to be likely 75 requests every 560 seconds. To solve

this technical problem, we firstly implemented to set sleep time between every request, but

it takes over 4 hours to query all the dataset. According to the policy of Google service, an

optimal crawler is implemented to speed up the procedure of the querying. It reschedules

the sleep strategy to 72 requests and then waits 580 seconds every round instead of sleeping

10 seconds between each request. With the new strategy, the time of the querying reduces

to 3 hours for all the concepts. Besides, the optimal crawler is encapsulated as a Python

class which can automatically query the frequencies given a concept and a period of years.

Moreover, it provides an option that can aggregate the frequencies of a concept in a range

for years into the maximum, minimum, mean, and standard deviation. The aggregations

may help feature engineering to be discussed in Section 4.3.2.

3.5 English Semantic Feature Database

Mentioned in Section 2.1.4, BART will be fine-tuned with semantic features of words.

A project of producing English semantic features1 provides a database of 4436 concepts

with their semantic features by Buchanan et al. (4). We use the English Semantic Feature

Database to obtain the semantic features of concepts and build a training set for fine-tuning

BART. The database is organized with word pairs (concept, feature) which represent the

close relation of their meanings and other statistics on semantics. For example, a word pair

(abandon, desert) presents that concept abandon has the close meaning to desert which is

a feature of concept abandon. Statistics of a pair include the frequency and the normalized

occurrence of its feature in the database and the sample size of its concept. The part

of speech is also labeled following each pair. They built the database by examining the

answers to concepts obtained from crowdsourcing and processing their feature frequencies

respectively. We only utilize the pairs in the English Semantic Feature Database to build

a dataset of concepts and their semantic features.

The entire database has 69284 records of the word pairs with the part of speech (POS)

as well as the statistics on features and frequencies. The features have already been ’trans-

lated’ to lemmas (lemmatization) using Snowball stemmer (36) by Buchanan et al. The

pairs of lemmas with with all the parts of speech are adopted in fine-tuning the BART. The

detail of the English semantic feature database is summarized in Table 3.3. The #records

column is the total features of the concepts before lemmatization.

1https://wordnorms.com/
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POS #Concepts #Records #Lemma Pairs

Noun 3125 51923 32051
Adjective 663 7511 3929
Verb 548 8772 6045
Other 100 1078 591

Total 4436 69284 42616

Table 3.3: Summary of the English Semantic Feature Database
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Figure 3.1: Hierarchy of concepts in WordNet (3)
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Method

4.1 Classifier

Concepts are categorized into basic level or non-basic level. The classification task in

this project is performed by a machine learning classifier, Random Forest with SMOTE

algorithm. It is used to measure the performance of the synthetic features.

There are several reasons to adopt Random Forest with SMOTE algorithm. The classi-

fier was developed and used in both Hollink et al. (26) and Henry (10). It has been proven

that it is the best classifier for the basic level in Hollink et al. (26) and reused by Henry.

Performance improved by the features in our work is easier to be compared with others

using the same classifier. Another reason is the advantages of Random Forest itself. It

introduces randomization that helps to avoid over-fitting. It can be trained fast and effi-

ciently even with large-scale data. The input features can be both discrete and continuous

variables without normalization. Moreover, after training and validation, it can return the

importance of each feature which helps to analyze the effeteness of the features.

The Random Forest has 1400 Decision Trees as base learners trained with sub-dataset

sampled with replacement from the dataset. Because of the method of bootstrap to build

up the Random Forest, out-of-bag samples are feasible to estimate the generalization score

of the classifier. For each Decision Tree in the Random Forest, Gini impurity is used to

measure the quality of a split with a node. Gini impurity and entropy are equivalent in

most cases. It is fast to calculate a linear function Gini impurity rather than entropy which

contains logarithmic operations. The maximum depth of each tree is set to 50 which can

control over-fitting and make the training fast. It requires that each split leads to at least

two child nodes and each node has at least one instance from the training data.
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We also use a Support Vector Machine(SVM) classifier as some semantic features are

made up of vector-based embeddings. The Random Forest classifier was not good at

classifying the word embeddings in our preliminary experiments. The SVM is trained

with Radial Basis Function kernel, exp(−γ||x−x′||2), where x and x′ are both embedding

vectors. After tuning by grid search, the best setting of the hyper-parameter γ is scaled

by γ = 1/(n ∗ var), where n is the number of the vector dimension and var is the variance

of the input matrix.

The SVM is only used for classification with the semantic feature of word embeddings in

Section 4.4.1. The Random Forest as the benchmark of the method is the main classifier

used to learn and predict the basic level.

4.2 Structural Feature Extraction

Structural features include lexical features of concepts and relational features of them

extracted from WordNet. The synonymy, hypernymy, and hyponymy of a concept in

WordNet convey semantic relations which reflect the senses of the concept with its su-

perordinates and subordinates. According to the cognitive economy in Rosch et al. (5),

the relational features would be important indicators to classify whether a concept is in

the basic level that carries the most information and costs minimal effort. Moreover, as

discussed in Section 2.1.1.1, the relational features in the hierarchy, WordNet, naturally

represent a correlational structure of the real-world knowledge which is significant in the

basic level theory.

The basic level can be learned also from the lexical features. As discovered by (37), one of

the characteristics of the basic level concepts is that they are generally denoted by shorter

and more polysemous words. Therefore, the character length of lemmas in a concept and

the number of the lemma polysemies would be important features for predicting the basic

level concepts.

Hollink et al. (26) and Henry (10) both considered these structural features. Their data

of lexical features and relational features are referred to in our work. Only some of the

WordNet features in Henry’s work are selected and reused in our method. The following

structural features are extracted and to be trained by the classifier. The number of the

indirect hyponyms of a concept and the mean character length of lemmas in a concept

are not reused because they did not improve the performance of predicting the basic level

in our preliminary experiments. The sum of lemma frequencies in a concept is neither

selected as the frequency feature is extracted and analyzed independently in Section 4.3.

20



4.3 Concept Frequency

• The number of the direct hypernyms of a concept

• The number of the total(direct and indirect) hyponyms of a concept

• The normalized number of part-whole relations related to a concept

• The normalized depth of a concept from the root synset

• The normalized character length in the gloss of a concept

• The shortest character length of lemmas in a concept

• The number of lemmas in a concept

• The maximal number of polysemies of lemmas in a concept

4.3 Concept Frequency

For the concept frequency feature, we focus on the sources of frequencies of concepts. To

answer the first research question, corpora with different characteristics are firstly com-

pared to extract the frequency features which contribute the most to the performance.

Then, according to the most reliable corpus characteristics of predicting the basic level,

frequencies of the concepts are acquired (in Section 3.4) and processed by feature engineer-

ing.

4.3.1 Corpus Characteristics Comparison

Frequencies of concepts can be extracted from various corpora. Roach et al. found that the

basic level concepts are prominently used in daily communications, especially in commu-

nication with children. She also argued that the basic level could be the earliest categories

sorted and named by children (5). Therefore, concept frequencies extracted from spoken

discourses and child target audience corpora might improve the performance of basic level

prediction. The corpus characteristics compared are the discourse type, target audience,

and size of a corpus. The comparisons should take the size of the original corpus into

account, as discussed in Section 3.3.

Unlike in Henry’s work (10) which adopted a range of statistics to calculate frequencies,

the frequency of a concept in this method is purely defined by occurrences of its lemmas.

The sum of occurrences of the lemmas in a corpus of a given size represents the frequency

of the concept. We did not choose the average of the occurrences as the averaged values
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are extremely small which is harmful to the classification performance by Random Forest.

The sum of occurrences in a corpus is the frequency feature of a concept directly fed to

the classifier.

The first comparison concentrates on the size of a corpus. The hypothesis is that perfor-

mance would become better when the size of the corpus increases. Based on the structural

features, the frequency features are verified respectively by the benchmark Random Forest.

With the different types and sizes of corpora sampled, multiple classifiers are trained and

validated under the models and experiment settings designed in Section 5.1.

The second comparison focuses on the discourse type of a corpus. The hypothesis is

that performance of the classifier trained by the frequency feature from a spoken corpus

is better than that from a written corpus. This is inspired by the previous research that

the basic level concepts are likely to be mentioned in daily communications and be the

most used in languages (5). Intuitively, frequencies of the basic level in a spoken corpus

would perform better and be more important than those in a written corpus. Under this

assumption, the frequency feature from a spoken corpus is a more important and effective

feature for the classifier. The comparison is conducted with a series of Wilcoxon rank-sum

tests.

The third comparison concentrates on the target audience of a corpus. The experiments

in Rosch et al. (5) showed that basic level concepts are the first used by children developing

language. According to this statement, the hypothesis is that performance by the frequency

feature from a corpus specific to children is better than that from a general audience corpus.

Similar to the second comparison, the performance of the benchmark classifier trained with

the frequency feature from a child-specific corpus and from a general audience corpus is

compared by Wilcoxon rank-sum tests.

It is worth noting that both the second and the third comparisons consider the size of

the frequency source, which is regarded as a primary corpus characteristic in this method.

The design of the experiments is clarified in Section 5.2.

4.3.2 Frequency from Google Ngram

According to the results of the Wilcoxon rank-sum tests in Section 6.1.2, it would be better

to use a large, written, and general audience corpus as the source of concept frequency.

Google Book Ngram Corpus, is the largest corpus of printed publications available for

public research. Therefore, the frequency features for predicting the basic level are ex-

tracted from Google Ngram. Same as the decision on the frequency source by Hollink et
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al. (26) and Henry (10), they both selected Google Ngram to extract frequencies because

the frequency feature from it was the strongest individual feature among their experiments.

The frequency of a concept is the sum of frequencies of its lemmas in Google Ngram.

By the data acquisition in Section 3.4, the frequency of a concept by year can be returned

with an array whose elements represent the frequencies of the concept each year in Google

Ngram. To discover whether the time period affects the performance, frequencies from

Google Ngram corpus in the recent (based on 2019) 1 year, 5, 10, 20, 50, 100, 200, 400,

and 500 years are gathered and stored for feature engineering. The frequencies in each

array can be aggregated into the mean and maximal values as the features. The mean

frequency would represent the average occurrences of a concept during a certain range of

years while the maximal one would show how much was the most significant used in those

years. After the processing, two groups of the frequency features of a concept each with

9 values are respectively the mean frequencies and the maximal frequencies among the 9

time periods.

The classifier keeps the same corpus characteristics comparison in Section 4.3.1 except

for the frequency feature selected. That is to say, the structural features remain as the base

and pop each aggregated frequency feature into the training, shown in Figure 4.1. Hence,

the performance of each Google Ngram frequency feature can be compared to discover

whether there would be some patterns related to the time periods.

To find the best setting of the frequency features, we perform wrapper methods of the

feature selection. Bottom-up and top-down approaches are deployed to check which com-

bination would perform best with the metric of Cohen’s kappa score. The importance of

the features in the best setting from the benchmark Random Forest classifier is ranked

and analyzed in Section 6. The best combination of the frequency features is added to the

synthetic features together with the structural features and used to train the final classifier.

4.4 Generative Semantic Features

In our context "semantics" does not cover the general meaning of a concept. Because some

of the structural features as described in Section 4.2 convey the general semantics from the

lexical features or the relational features. "Semantic feature" in this context stands for the

semantic representation of a concept which is key to models of semantic memory for facts

(4) (38). In other words, semantic features in our work indicate the overlapping attributes

of a concept defined by semantic similarity, which are regarded as cues in Section 2.1.1.2.

For example, semantic features of a concept of cat might be animal, pet, tail, and fur.
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Base: Structural Features
# direct hypernyms
# total hyponyms
normalized # part-whole relations
normalized depth
normalized gloss length
shortest lemma length
# lemmas
maximal # polysemies

Candidates: Google Ngram Frequency Features
Mean frequency: 1, 5, 10, 20, 50, 100, 200, 400, and 500 years
Maximal frequency: 1, 5, 10, 20, 50, 100, 200, 400, and 500 years

Target: Basic Level Annotations
All agreed: basic or non-basic

Figure 4.1: Frequency Feature Schema

These features convey the most common and regular descriptions of a cat. Moreover, the

semantic features might cover shapes, appearance, uses, gender, locations, characteristics,

etc. The aims of generating the semantic features are to measure the similarity of concepts

and to create cues of concepts for predicting the basic level.

To learn the basic level from the semantic features, two methods are proposed to extract

such semantics namely word embeddings and cues generated from BART. The rationales

behind the two methods are: (1) Word embeddings, Word2vec, would provide effective

semantic features for predicting the basic level because it can measure a latent semantic

distance between concepts in a hierarchy. The semantic distance between a concept and its

semantic features is close. For example, concept cat and feature animal or tail is close in

semantic distance but is far from feature electricity. (2) Generating the semantic features

from the fine-tuned BART as cues would improve the accuracy of the prediction by using

cue validity. This is inspired by the finding by Rosch et al. (5) that basic-level categories

have high cue validities and is based on the improved F1 score of detecting the basic level

by BART in Chen and Teufel’s (1).

4.4.1 Word Embeddings

Word embeddings are from ConceptNet Numberbatch 19.08 trained by Word2vec, which is

a task to represent words in the form of real-number vectors. The semantics of concepts

is contained implicitly in the vectors. Intuitively, we use this model to compute the vector

of a concept as looking up in a dictionary. Each lemma of concepts is converted to a 300-
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dimension vector. Unfortunately, there are 63 concepts in multi-word grams which are not

contained in the vocabulary of the pre-trained ConceptNet Numberbatch 19.08 vectors.

Originally, it is required to continue to train the model with sentences including these

missing multi-word grams. However, 7.5% of the annotated concepts can not find entries,

only one of which is the basic level. The missing concepts are eliminated from the dataset

for convenience and the rest 776 concepts (174 of them are the basic level) are the training

data.

Because the benchmark classifier used is Random Forest with SMOTE algorithm, it is

not a good idea to feed the 300-dimension vectors into the model directly. The reason

is that the vectors contain semantics implicitly, unlike the structural features and the

frequency features explicitly show the attributes. There are two ways to represent such

semantics: One is to adopt the vectors directly which means they could be learned by

training a Support Vector Machine as a classifier. The second is to use feature engineering.

However, SVM is turned out from our experiments that the performance of classifying

the basic level is not as good as Random Forest. The detailed results and interpretations

are discussed in Section 6.3.1.1.

Feature engineering: alternatively semantics can be derived by measuring distances be-

tween semantic features. An aggregation method is proposed to extract the semantic

features. Lemma distance is defined by the cosine similarity of vectors of two lemmas.

Distance-based semantic features of a concept are calculated from lemmas in the concept

and its hypernyms based on the lemma distance. The concept distances are then aggre-

gated by mean, minimum, maximum, and standard deviation. For example, here is a

hierarchy of three concepts in Figure 4.2 to calculate semantic features from their word

embeddings. If semantic features of Concept adjustable wrench is required, cosine simi-

larities as lemma distances between Lemma wrench and adjustable wrench, wrench and

adjustable spanner as well as lemma distances between spanner and the other two lemmas

are calculated. Then the mean, minimum, maximum, and standard deviation of the four

lemma distances can become the distance-based semantic features.

The semantic features from word embeddings by Word2vec are the four concept distance

aggregations of a concept. To find out whether distance-based semantic features improve

the performance, we train the benchmark classifier Random Forest with SMOTE algorithm.

4.4.2 Generate From BART

Besides extracting semantic features from word embeddings, we suppose that concepts

could be characterized by cues. The cues of a concept give properties, categories, at-
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Synset('wrench.n.03') 
 

['wrench', 'spanner']

Synset('allen_wrench.n.01') 

['Allen_wrench']

Synset('adjustable_wrench.n.03') 

['adjustable_wrench',
'adjustable_spanner']

...

Figure 4.2: Example of calculating semantic features

tributes, and some characteristics to the concept. Inspired by Machine Translation, these

textual semantic features can be generated by a sequence-to-sequence machine learning

task. Traditional Machine Translation learns the mapping relations from a source lan-

guage to a target language. It uses transformers to learn the context both in the source

and the target. The autoencoder constructs a sequence-to-sequence architecture to learn

the mapping relations. In our work, the source is concepts to be predicted and the target

is a series of semantic features. The mapping relations are learned from the processed pairs

in the English Semantic Feature Database. Therefore, generated target cues represent the

semantic features of the source concept rather than its synonyms. One famous pre-trained

model BART provides a good tokenization tool as well as a base model to fine-tune for

semantic feature generation.

The training data for fine-tuning is from the English Semantic Feature Database (4).

We only select concepts and their corresponding lemmatized features as (concept, feature)

pairs to build up the fine-tuning dataset. To make the fine-tuning easier, we define a

class of dataset inherited from Torch Dataset 1 to wrap the processed data into a set of

a dictionary. Each dictionary would be a mapping from a word to its semantic features.

The dataset class is also implemented with getLength and getItem functions.

After the processing and wrapping of the fine-tuning dataset. The generation is composed

of three phases: tokenization, fine-tuning, and generating illustrated in Figure 4.3.

• Tokenization, as discussed in Section 2.1.4, we use Initialized Encoder to tokenize

concepts. BART is here used as a tokenizer to obtain a token identification of each

1https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
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Bidirectional
Encoder

Auto-regressive
Decoder

<s> A B C D

A B C D E

Tokenizer
Concept

Cues

BART

Semantic Feature Generator

English Semantic
Feature Database

ConceptBasic Level
Annotation

Dataset

Semantic Feature

Fine-tuning Generating

Tokenization

Figure 4.3: Semantic Feature Generation Pipeline

concept and its semantic features. The token identification is in form of a real-number

tensor. It encodes text-based information into tensor-based numerical information

which contains semantics pre-learned in BART.

• Fine-tuning, following the architecture of BART, we build a sequence-to-sequence

trainer to learn the mapping in the English semantic feature database. The hyper-

parameters are shown in Table 4.1. The metric is SacreBLEU which provides BLEU

scores used to evaluate Machine Translation models (39). We aim to save the best

two fine-tuned models during training. The two are used to translate lemmas into

their semantic features.

• Generating, using one of the best fine-tuned models, we can generate semantic

features of the concepts in the annotation dataset. The concepts in the dataset can

be fully fitted in this pipeline for semantic feature generation.

Although we are able to generate semantic features, they are text-based which are not

easy to learn directly. It is more reasonable to transform the textual feature into a numerical

one that could utilize the semantics. I come up with an indicator that reflects the original

basic level theory, namely cue validity. According to Rosch’s statement, cue validity can

be a probabilistic indicator which is the validity of a given cue as a predictor of a given
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Hyper-parameter Value

evaluation strategy after epoch
learning rate 2e− 5

train batch size 8

evaluate batch size 8

weight decay 0.01

checkpoint number 2

train epochs number 3

predict with generate true

Table 4.1: Hyper-parameter Setting for Fine-tuning BART

category, the basic-level category (5). To make it easy to understand, cue validity is from

conditional probability to indicate how likely it would be at the basic level.

As discussed in Section 2.1.1, there are different formulations of the cue validities. To

have a measurement for the cue validity in the project, based on the formal probabilistic

conception, here is a formula for computing cue validity given the cue and knowing whether

a concept is the basic level:

val(cue) = P (BL|cue) = P (BL ∧ cue)

P (cue)
(4.1)

Since a concept does not have the only cue in most cases, the cue validity of one concept,

CV (concept), is defined by a sum of the cue validities of a group of cues, which are the

attributes of lemmas of the concept, with Equation 4.1:

CV (concept) =
∑

l∈lemmas(concept)

∑
cue∈attribute(l)

P (BL ∧ cue)

P (cue)
(4.2)

The cue validity of a concept is no longer a probability but an accumulation of prob-

abilities. The same hierarchy can be taken as an example of defining basic level by cue

validity of concepts, in Figure 4.4. Here are the lemma attributes and a cue validity of

each concept in the hierarchy. The cues shown in the figure are mostly from a database by

(4) or generated by Section 4.4.2 if concepts are not in the database. It reveals that the

concept of cat and the concept of dog show the greatest two cue validities which indicate

they are the basic level. The result keeps the same as that in the approach of cognitive

economy.

The number of the cues and the cue validity can be the semantic features of a concept

according to the method. These two features are input to train the benchmark Random

Forest classifier for predicting the basic level.
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Animal
creature cute wild live human 
eat fur pet zoo cat 
mammal dog 

Mammal
animal air live 
blood fur breath 
hair warm reptile

Carnivore animal eat live large

Cat animal allergy meow 
mouse predator fur...

Dog animal bark cute chase 
bone fur domestic pet...

Persian animal 
beak black
cat eat
feather fur
four hair
long leg

Bengal animal black
cat eat fur
four hair
long

Poodle animal  
beak dog
four fur 

Bulldog animal eat
beak dog
cute four fur 

...

...

...

... ...

CV=0.59

CV=0.92

CV=3.12

CV=5.0 CV=3.6

CV=0.8 CV=2.3 CV=2.0 CV=2.0

Figure 4.4: Concept hierarchy with cue validities example(4)
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Experiment Setting

5.1 Dataset and Model Setup

The basic level annotations and the synthetics features of the concepts constitute the

final dataset to be used to train the Random Forest classifier. Three types of models are

performed to test improvement of predicting basic level from the synthetic features. In

this section, metrics measuring the performance of models, splitting of the dataset, and

the three models will be discussed.

Cohen’s kappa score(40) and balanced accuracy score(41) are used as metrics for evalu-

ating the performance of the models with imbalanced data. Cohen’s kappa measures the

inter-rater reliability for the basic level or not. Specifically, it indicates how well the model

predicts the basic level correctly compared to predicting randomly by chance. Balanced

accuracy is useful to evaluate how good a binary classifier is when trained with imbalanced

data. It considers sensitivity, which is the true positive rate, and specificity, which is the

true negative rate.

For each experiment, 10-fold cross-validation is used to train and evaluate the model.

Due to the imbalance of the annotation data, Stratified K-fold1, a variation of K-fold cross-

validation which samples each set to contain the same percentage of the basic level as the

whole dataset, is implemented to split the dataset into training data and validation data

with 10 groups. Under this setting, every experiment will return 10 groups of Cohen’s kappa

scores and balanced accuracy scores. The two averaged values of the scores respectively

are used to evaluate the performance of the model.

The experiments include the effectiveness of each type in the synthetic features based on

the structural one, Table 5.1. To verify the method and the synthetic features within and
1https://scikit-learn.org/stable/modules/cross_validation.html#stratified-k-fold
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Feature type

EX_F_1 Structural features
EX_F_2 Structural features + Frequency features from Google Ngram
EX_F_3 Structural features + Semantic features by word embeddings
EX_F_4 Structural features + Semantic features generated by BART

Table 5.1: Experiment Settings for Feature Effectiveness

Training Data Testing Data

GlobalModel All 5 domains All 5 domains

LocalModel

hand tool hand tool
edible fruit edible fruit

musical instrument musical instrument
furniture furniture
garment garment

TransferModel

edible fruit, musical instrument, furniture, garment hand tool
hand tool, musical instrument, furniture, garment edible fruit

hand tool, edible fruit, furniture, garment musical instrument
hand tool, edible fruit, musical instrument, garment furniture
hand tool, edible fruit, musical instrument, furniture garment

Table 5.2: Model Settings

across domains, three models are set up for evaluating and comparing the performance.

They are named GlobalModel, LocalModel, and TransferModel, described in Table 5.2.

5.1.1 GlobalModel

GlobalModel is trained and tested with the data from all the five domains in Table 3.1. This

model can fully use the annotated concept we have. In other words, it can have as much

data as possible to participate in the training. By GlobalModel, the overall performance

of predicting the basic level in a hierarchy will be revealed. The results would indicate

whether it is effective to add the synthetic features in training and how much it improves

or hurts the accuracy for all the domains.

31



5. EXPERIMENT SETTING

5.1.2 LocalModel

LocalModel is trained and tested the classifier with the concepts in the same domain.

Therefore, there will be five models trained within each LocalModel setting. The result of

each LocalModel will indicate whether it is effective to train with the synthetic features

within a specific domain. The results by the five domains can then be averaged only to show

the influence introduced by the different kinds of features on the five domains. Feature

importance in every Random Forest classifier is returned for comparing contributions of

the synthetic features among the different domains.

5.1.3 TransferModel

TransferModel is trained with concepts within four of the five domains and tested on the

rest. Similar to LocalModel, there will be five TransferModel trained during an experiment.

However, it does not need to set up the 10-fold cross-validation because training data and

validation data have been split by the definition. The result of each experiment is the

averaged metrics from TransferModels of the five domains. TransferModel aims to verify

the generalization of the method. The accuracy on unseen domains means whether the

trained model is appropriate to predict the basic level under other domains of knowledge.

It can help to detect the basic level in a large-scaled hierarchy, all concepts in WordNet.

5.2 Wilcoxon Rank-Sum Test

To answer the first research question about the relation between prediction performance

and the size of corpora, it requires finding whether there is a dependency between the corpus

size and the metrics, Cohen’s kappa, or balanced accuracy. Wilcoxon rank-sum test, also

known as Mann-Whitney U test(42), is performed to test the null hypothesis that the

prediction performance of Cohen’s kappa values and balanced accuracy by different sizes

of the same corpus are from the same distribution.

The experiment focuses on the source of frequency features. Before conducting Wilcoxon

rank-sum test, the corpora are sampled into different sizes in Table 5.3 and used to calculate

frequencies. Each corpus in the scheme is sampled 50 times. For example, BNC is sampled

into the word counts of 1 million, marked BNC 1M, 50 times. Therefore, there are 500

sampled corpora in total. The sampled corpora will be the sources of the frequency features

which are used to train the Random Forest classifier.
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Corpus 1M 2.4M 5.7M 100M

BNC
√ √ √ √

CHILDES
√ √ √

CABNC
√ √

KBNC
√

Table 5.3: Corpora Sampling in Different Sizes

After sampling, the classifier is trained and tested by the structural features and the

frequency feature. With the model setting in Section 5.1, frequency features from different

sampled corpora can be used to train and test with the three models. Each corpus in

a specific size leads to 50 results with each model. Totally, there will be 1500 groups of

Cohen’s kappa and balanced accuracy results from the corresponding models and frequency

sources.

Wilcoxon rank-sum test is carried out to test two aspects of hypotheses about the size

and the type of corpora. The experiment settings are described in Table 5.4 and Table 5.5.

The initial setting EX_W_0 is to have the Cohen’s kappa and the balanced accuracy of

each model from the samples in Table 5.3. The first setting EX_W_1 is to compare the

results from the same corpus but with different sizes. The second setting EX_W_2 is to

compare the results from the same discourse type of a corpus and different sizes. The third

setting EX_W_3 is to compare the results from the same target audience of a corpus and

different sizes. The last setting EX_W_4 is to compare the results from the same size but

different discourse types and target audiences of corpora.

5.3 Experiments on Synthetic Features

As described in Table 5.1, There are four settings of the experiments checking whether and

how much the synthetic features would improve the performance of predicting the basic

level. Each of the settings check the features with the three models in Table 5.2.

5.3.1 Structural Features

Experiment EX_F_1 only trains the Random Forest classifier with the structural features

in Section 4.2. It is used as the baseline compared with the performance by frequency

features from Google Ngram and the semantic features in terms of improvement and growth

rate.
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Corpus Size

EX_W_0

KBNC 1M
CABNC 1M, 2.4M

CHILDES 1M, 2.4M, 5.7M
BNC 1M, 2.4M, 5.7M, 100M

EX_W_1

CABNC 1M - 2.4M

CHILDES
1M - 2.4M
1M - 5.7M
2.4M - 5.7M

BNC

1M - 2.4M
1M - 5.7M
1M - 100M
2.4M - 5.7M
2.4M - 100M
5.7M - 100M

EX_W_2

Written

1M - 2.4M
1M - 5.7M
1M - 100M
2.4M - 5.7M
2.4M - 100M
5.7M - 100M

Spoken
1M - 2.4M
1M - 5.7M
2.4M - 5.7M

EX_W_3

General

1M - 2.4M
1M - 5.7M
1M - 100M
2.4M - 5.7M
2.4M - 100M
5.7M - 100M

Children
1M - 2.4M
1M - 5.7M
2.4M - 5.7M

Table 5.4: Experiment Settings for Wilcoxon Rank-Sum Test
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Size Discourse Type / Target Audience

EX_W_4

1M
Written - Spoken
General - Children

2.4M
Written - Spoken
General - Children

5.7M
Written - Spoken
General - Children

Table 5.5: Experiment Settings for Wilcoxon Rank-Sum Test

5.3.2 Frequency Features

Experiment EX_F_2 trains the Random Forest classifier with the structural features and

the frequency features from Google Ngram. As discussed in Section 4.3.2, we first find

and select the best combination of the frequency features in the three models respectively.

Then, the classifiers with the three model settings are trained using the best selections of

the frequency features. The results of each model are compared with the baseline to check

how much the frequency features from Google Ngram improve the performance.

5.3.3 Semantic Features

5.3.3.1 Word Embeddings

Experiment EX_F_3 has two sub-experiments: vector-based and distance-based. The

EX_F_3:vector-based trains the SVMs in the three models with the structural features

and the 300-dimension vectors which implicitly stand for the semantic feature of concepts.

The results are compared with the baseline to see whether the original word embeddings by

Word2vec could improve the performance. The EX_F_3:distance-based train the Ran-

dom Forest classifiers with the structural features and the aggregations of concept dis-

tances which explicitly convey the semantic feature of concepts. The results are similarly

compared with the baseline to check how much the aggregated features from the word

embeddings improve the performance.

5.3.3.2 Generated by BART

Experiment EX_F_4 consists of three steps. The first step is fine-tuning BART and

generating cues of the concepts in the basic level annotation dataset. The second step is

calculating the cue validity of every concept. The last step is training the Random Forest

classifiers in the three models. We only discuss the results of predicting the basic level from
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the last step1. The results are compared to the baseline to check how much the semantic

features of generated cues and the cue validity improve the performance of predicting the

basic level.

5.4 Detect in WordNet

To predict the basic level under a large-scale data environment for the uses in applications,

we design EX_WN to detect the basic level concepts from all the synonyms in WordNet

under the branch of entity.n.01 which are the entire concepts with the root of entity.n.01

shown in 3.1. The model with the synthetic features resulting in the highest Cohen’s kappa

is used to detect the basic level in WordNet. The detection results are made into a dataset

of the basic level concepts. The dataset will be evaluated and compared with Henry’s (10)

and Hollink et al’s (26) in Section 6.

1The results of the former two steps can be found in the GitHub.
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6

Results & Evaluation

6.1 Tests on Corpus Characteristics

6.1.1 EX_F_1: Structural Features

In order to set up a baseline for our work, we first tried to reproduce the work Henry’s

work (10). The performance of the experiment settings is summarized in Table 8.1, Table

8.2, and Table 8.3. We regard the results as the baseline for predicting the basic level with

different features from the methods proposed.

The results are not exactly the same as Henry’s because we only chose the WordNet

features, the structural features in this thesis, to train the classifier. The trends of Cohen’s

kappa and balanced accuracy are similar across the experiments. They are used to verify

whether the new frequency and semantic features have positive effects to improve the

performance on predicting the basic level.

6.1.2 Wilcoxon Rank-Sum Test

Because the null hypothesis H0 is tested across several results of the experiment settings,

according to (43), we have to apply Bonferroni correction to the significance level of α =

0.05 with the number of the null hypotheses m. The correct significance level is:

α′ =
α

m
(6.1)

As shown in Table 5.4, there are 10H0s in EX_W_1, so the significance level is α′ = 0.005.

Similarly, m = 9 in EX_W_2 and EX_W_3, α′ is both 0.006. In Table 5.5, the results

from different corpus samples are tested for 3 times. Therefore, α′ is 0.017 in EX_W_4.
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Corpus 1M 2.4M 5.7M 100M

BNC 0.680 0.675 0.675 0.689

CHILDES 0.666 0.674 0.675

CABNC 0.674 0.672

KBNC 0.686

Table 6.1: Averaged Cohen’s Kappa of EX_W_0-GlobalModel

Corpus 1M 2.4M 5.7M 100M

BNC 0.650 0.657 0.655 0.662

CHILDES 0.643 0.647 0.649

CABNC 0.643 0.645

KBNC 0.633

Table 6.2: Averaged Cohen’s Kappa of EX_W_0-LocalModel

6.1.2.1 EX_W_0: Performance with Samples

After sampling the four corpora 50 times with different sizes as discussed in Section 5.2,

each sample is the source of frequency features that are used to train the classifier together

with the structural features as the base. The overall results of the three models are shown

by box plots in Appendix B.1. The data in the box plots of the GlobalModel is directly the

results of the two metrics testing on the five domains, while the data in the LocalModel

and the TransferModel is the average results tested on the five settings shown in Table 5.2.

The Cohen’s kappa of different models are shown in Table 6.1, Table 6.2, and Table 6.3,

their balanced accuracy are shown in Appendix B.1. The averaged performance metrics of

each frequency source in the three model settings are summarized respectively in Figure

8.1 Figure 8.3, and Figure 8.5.

Corpus 1M 2.4M 5.7M 100M

BNC 0.532 0.539 0.543 0.556

CHILDES 0.524 0.521 0.518

CABNC 0.510 0.516

KBNC 0.531

Table 6.3: Averaged Cohen’s Kappa of EX_W_0-TransferModel
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6.1 Tests on Corpus Characteristics

The null hypothesis is that Cohen’s kappa value would get greater with an increment

of the size of the corpus. Among the three models, LocalModel on the left of Figure 8.3

shows the best-averaged kappa. However, it might be not useful to predict concepts with

unknown domains. For GlobalModel on the left of Figure 8.1, KBNC the samples in 1

million show good results compared to the other corpora in a relatively small size. Except

for that, among all the other settings, BNC shows the best performance, especially with

BNC 100M. For TransferModel on the left of Figure 8.5, CHILDES even has a continuous

descending trend.

The performance shown in Figure 8.2, Figure 8.4, and Figure 8.6 depict distributions

of the performance of the trained modules with different settings of the samples. For

the LocalModel, BNC performs the best in terms of the median of Cohen’s kappa. With

the increment of the size, kappa values tend to have lower variances. BNC and CABNC

perform better than the other two children specific corpora. But it is the only case in

the LocalModel. For GlobalModel, BNC and KBNC perform similarly well. It is an

exciting finding that the written corpora would perform better than the spoken ones in the

GlobalModel also in the TransferModel shown in the figures. For TransferModel, BNC is

the best frequency source among them again.

6.1.2.2 EX_W_1: Same Corpus Different Sizes

In order to verify the existence of deep relationships in the three models individually. By

just looking at the plots in Figure 8.1, Figure 8.3, and Figure 8.5, it is difficult to draw any

conclusion, we have thus decide to use statistical method to test the hypotheses. To make

it convincing, we use a statistical method to test hypotheses. As described in Section 5.2,

we performed Wilcoxon rank-sum tests on the testing results by the classifiers trained with

frequency features from corpora in different sizes.

The first group of results is about the performance with the same corpus but with

different sizes. The null hypothesis H0 is that Cohen’s kappas under the same model but

with different two sizes of a given corpus are from the same distribution. The alternative

hypothesis H1 is that the kappa values with a smaller corpus size are less than those with

a larger size.

The p-values of the Wilcoxon rank-sum tests on Cohen’s kappa from EX_W_1-GlobalModel

are in Table 6.4. The results are not significant enough to reject H0. We can not say the

performance becomes better with a larger corpus in the GlobalModel. The situation is

the same in the LocalModel in Table 6.5. In the TransferModel, Table 6.6, there are more
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Corpus Size CABNC CHILDES BNC

1M-2.4M 0.822 0.000 0.993

1M-5.7M 0.000 0.983

1M-100M 0.000

2.4M-5.7M 0.342 0.590

2.4M-100M 0.000

5.7M-100M 0.000

Table 6.4: P-values of EX_W_1-GlobalModel on Cohen’s Kappa

Corpus Size CABNC CHILDES BNC

1M-2.4M 0.122 0.036 0.001

1M-5.7M 0.001 0.007

1M-100M 0.000

2.4M-5.7M 0.075 0.758

2.4M-100M 0.003

5.7M-100M 0.000

Table 6.5: P-values of EX_W_1-LocalModel on Cohen’s Kappa

p-values lower than α′ = 0.005 accepting H1 that a larger size corpus as the frequency

source leads to a better performance of predicting the basic level.

6.1.2.3 EX_W_2: Same Discourse Type Different Sizes

Similar to EX_W_1, Wilcoxon rank-sum tests are performed to test the null hypothesis

H0 that Cohen’s kappas under the same model, the same discourse type, but different two

sizes of a given corpus are from the same distribution. The H1 is that a corpus with the

larger size outcomes the better Cohen’s kappa. The significance level is α′ = 0.006

The results of the tests with Cohen’s kappa for GlobalModel, LocalModel, and Transfer-

Model are respectively shown in Table 6.7, Table 6.8, and Table 6.9. In the GlobalModel,

there is only one test using the spoken corpora and three tests using the written corpora

that reject H0. Especially, only the written corpus with the sample size of 100 million,

which is right BNC 100M, can reject H0 as it performs the best over all the settings. Within

the spoken corpora, 5.7 million samples also stand out which can be interpreted to gain

from a larger size. In the LocalModel, most of the tests with the written corpora reject

H0 except the size of 2.4 million versus 5.7 million. The tests from the spoken corpora
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Corpus Size CABNC CHILDES BNC

1M-2.4M 0.000 0.959 0.005

1M-5.7M 1.000 0.000

1M-100M 0.000

2.4M-5.7M 0.962 0.084

2.4M-100M 0.000

5.7M-100M 0.000

Table 6.6: P-values of EX_W_1-TransferModel on Cohen’s Kappa

Corpus Size Written Spoken General Children

1M-2.4M 1.000 0.016 0.993 0.937

1M-5.7M 1.000 0.003 0.863 0.865

1M-100M 0.000 0.000

2.4M-5.7M 0.590 0.074 0.358 0.342

2.4M-100M 0.000 0.000

5.7M-100M 0.000 0.000

Table 6.7: P-values of EX_W_2 and EX_W_3-GlobalModel on Cohen’s Kappa

indicate the same rejections as in the GlobalModel. In the TransferModel, no tests with

the spoken corpora can reject H0 but five of the tests with the written corpora reject H0.

It is more meaningful to take the test results of TransferModel as references for predicting

concepts than the other models. The reason is that in most cases prediction is done with

concepts from different or unseen domains. The TransferModel experiments we designed

and performed can simulate such a situation well.

6.1.2.4 EX_W_3: Same Target Audience Different Sizes

The null hypothesis H0 that Cohen’s kappas under the same model, the same target audi-

ence, with different two sizes of given corpora are from the same distribution. The alter-

native hypothesis H1 is that the larger size leads to better performance, like in EX_W_2.

The results of the tests are outlined in Table 6.7, Table 6.8, and Table 6.9. In the

GlobalModel, the frequency features from the general corpora perform similarly to them

from the written corpora. This is mostly because BNC contributes the best performance

and much exceeds the other corpora. Especially in the LocalModel and the TransferModel,
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Corpus Size Written Spoken General Children

1M-2.4M 0.000 0.013 0.004 0.000

1M-5.7M 0.000 0.000 0.000 0.000

1M-100M 0.000 0.000

2.4M-5.7M 0.748 0.074 0.003 0.075

2.4M-100M 0.003 0.000

5.7M-100M 0.000 0.000

Table 6.8: P-values of EX_W_2 and EX_W_3-LocalModel on Cohen’s Kappa

Corpus Size Written Spoken General Children

1M-2.4M 0.000 0.129 0.001 1.000

1M-5.7M 0.000 0.246 0.000 1.000

1M-100M 0.000 0.000

2.4M-5.7M 0.084 0.510 0.000 0.962

2.4M-100M 0.000 0.000

5.7M-100M 0.000 0.000

Table 6.9: P-values of EX_W_2 and EX_W_3-TransferModel on Cohen’s Kappa

all the tests with the written corpora reject H0. The children corpora do not have a

consistent conclusion on whether to reject the null hypotheses.

From the results in EX_W_2 and EX_W_3, the written group and the general group

reject the null hypothesis significantly. We can say that using a larger size general writ-

ten corpus to predict the basic level is better than a smaller one for the TransferModel

confidently. The situations are similar under the LocalModel and the GlobalModel. How-

ever, when looking at the children-specific corpora, the p-values are dramatically high.

There is only a written children corpus KBNC with 1M records in the dataset. Moreover,

frequency features from KBNC show pretty good performance in the Random Forest clas-

sifier as in Table 6.1 and Figure 8.1. This leads to a dilemma when testing the size within

children-specific corpora.

6.1.2.5 EX_W_4: Same Size Different Types and Targets

EX_W_4 is performed to compare the performance of predicting the basic level by differ-

ent discourse types and target audiences. The null hypothesis H0 is that Cohen’s kappas

under the same model, the same size of corpora, but different types and targets are from

42



6.1 Tests on Corpus Characteristics

Corpus Characteristics 1M 2.4M 5.7M

Written - Spoken 0.000 0.103 0.566

General - Children 0.558 0.755 0.566

Table 6.10: P-values of EX_W_4-GlobalModel on Cohen’s Kappa

Corpus Characteristics 1M 2.4M 5.7M

Written - Spoken 0.973 0.000 0.001

General - Children 0.000 0.008 0.001

Table 6.11: P-values of EX_W_4-LocalModel on Cohen’s Kappa

the same distribution. The alternative hypothesis H1 is the performance of the former

corpus is greater than the performance of the latter. The significance level is α′ = 0.017.

The results of the tests are shown in Table 6.10, Table 6.11, and Table 6.12. In the

GlobalModel, only the test between written corpora and spoken corpora with the same

size of 1 million reject the null hypothesis. It is the opposite in the LocalModel that the

other tests all reject H0. In the TransferModel, all the p-values of the tests for written

and spoken corpora are 0. We can confidently reject the null hypothesis and conclude

that frequency features from written corpora perform better than those from spoken ones.

Almost similar to Written - Spoken, the tests for general audience and children audience

corpora with samples of 2.4 million and 5.7 million indicate that we can reject the null

hypothesis and conclude that using general versions is better than specific to children ones.

However, there is again an abnormal result with 1 million samples from the children-specific

corpora, which implies that children-specific corpora perform better than general corpora

under a size of 1 million.

Using the best performing corpus characteristics which are large, written, and for general

audiences, we can see the improvement from Table 6.13 compared to the baseline. BNC

100M with the best corpus characteristics is used as the source of the frequency feature.

Corpus Characteristics 1M 2.4M 5.7M

Written - Spoken 0.000 0.000 0.000

General - Children 1.000 0.029 0.000

Table 6.12: P-values of EX_W_4-TransferModel on Cohen’s Kappa
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Model With BNC 100M Baseline Improvement Growth Rate

GlobalModel 0.690 0.673 0.017 +2.53%

LocalModel 0.662 0.640 0.022 +3.44%

TransferModel 0.556 0.521 0.035 +6.72%

Table 6.13: Best Corpus Characteristics Setting Performance on Cohen’s Kappa

6.2 Frequency Features: EX_F_2

There can be multiple frequency features of concepts from Google Ngram discussed in

Section 4.3.1. The performance of the frequency features is evaluated with the three model

settings in Table 5.2.

The results of the test of each module are plotted respectively in Appendix C. In the

GlobalModel (Figure 8.7), maximal frequency mainly behaves better kappa except for 1

year. It is expected to select 100 year maximum as the frequency feature. An unexpected

phenomenon is that 5 year and 100 year have a different trend. Moreover, 100 year

maximum has the best score in the same time the 100 year mean has the worst. One

possible cause of this phenomenon is that the value of the maximal frequency of 100 year

is relatively much larger than the mean frequency and then it would have a dominant

effect.

With the LocalModel (Figure 8.8), the mean frequencies are likely to perform better

than maximal frequencies, which is different from GlobalModel results. The peak score is

reached for 20 year mean. 100 year mean also performs well and has the second-highest

kappa value. In the TransferModel (Figure 8.9), the trends of the mean frequencies and

the maximal frequencies are interweaved. 20 year mean has the best score then followed by

two similar 100 year mean and 100 year maximum. However, the average value of kappas

is lower than the GlobalModel’s and the LocalModel’s.

To discover the best frequency feature setting, a wrapper method of the feature selection

is performed. We deploy bottom-up and top-down approaches to check which setting would

perform the highest kappa value for each model. The selection results and importance of

the features are shown in Appendix C.

After selecting the best group of the frequency features from Google Ngram, they are

used to train the classifier with the three models. The results and improvement compared

to the baseline (not using frequency features from Google Ngram) are shown in Table 6.14.

The growth rates are calculated based on the baseline in EX_F_1. Compared with the
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Model With Google Ngram Baseline Improvement Growth Rate

GlobalModel 0.714 0.673 0.041 +6.16%

LocalModel 0.712 0.640 0.072 +11.09%

TransferModel 0.590 0.521 0.069 +13.21%

Table 6.14: Results of EX_F_2 on Cohen’s Kappa

Model With Embedding Vector Baseline Improvement Growth Rate

GlobalModel 0.551 0.673 −0.122 −18.13%

LocalModel 0.561 0.640 −0.079 −12.34%

TransferModel 0.407 0.521 −0.114 −21.88%

Table 6.15: Results of EX_F_3 with Vector-Based Features on Cohen’s Kappa

improvement by the best performing corpus characteristics in Table 6.13, Google Ngram

improves more because of the larger corpus size.

6.3 Semantic Features: EX_F_3, EX_F_4

6.3.1 EX_F_3: Word Embeddings

We use two methods to extract the semantic features from word embeddings and evaluate

them using two different classifiers as described in Section 4.4.1.

6.3.1.1 Vector-Based Features

The first method to extract the semantic features is a 300-dimension vector of a concept.

The vectors are trained using SVM. Results and improvement are shown in Table 6.15.

Using SVM as the classifier, the results from vector-based features do not perform better

as expected, which confirms the results of Chen’s (1). The embedding features trained by

SVM even decrease the performance compared to the baseline trained by Random Forest

without the embeddings. One possible reason is that SVM tends to classify the concepts

with the similarity of lemmas. In other words, the concepts in the subordinate categories

are more likely to share a higher similarity and form the support vectors. This potentially

harms the harm to the binary classification task of the basic level.
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Model With Semantic Distance Baseline Improvement Growth Rate

GlobalModel 0.713 0.673 0.040 +6.01%

LocalModel 0.648 0.640 0.008 +1.23%

TransferModel 0.531 0.521 0.010 +2.06%

Table 6.16: Results of EX_F_3 with Distance-Based Features on Cohen’s Kappa

6.3.1.2 Distance-Based Features

The other extraction method is the aggregation of concept distances. The aggregated

distances used as the semantic features are trained using Random Forest. The results and

improvement are shown in Table 6.16.

All the three model tests show better Cohen’s kappa values. Compared to only learning

from the structural features, the distance-based semantic features from word embeddings

help to obtain better performance. It proves that distance-based features can enhance

the performance of predicting the basic level. The GlobalModel can learn more from

the distance-based semantic features. However, the improvement from the distance-based

semantic features for the LocalModel and the TransferModel is limited just by 1% and 2%

increased.

6.3.2 EX_F_4: Generated by BART

The improvement from the generated semantic features is huge in the three models as seen

in Table 6.17. The results evaluate the effectiveness of the fine-tuned BART generator and

the formula of cue validity for predicting the basic level. Performance enhances the most in

the LocalModel by 40.31%. This is due to a similar trend of the cue validities of the basic

level concepts within the same domain. It is easier and more efficient to learn the trend

of the cue validity than cross domains. That is why the improvement in the GlobalModel

30.91% and in the TransferModel 35.32% is not as much as in the LocalModel.

Cohen’s kappa in the GlobalModel is 0.881 and in the LocalModel is 0.898, which both

illustrate the best classification with Cohen’s kappa of 0.740 among the related work dis-

cussed in Section 2.2. The performance in the TransferModel though is in the last place

among the three models, it has been better than the best one in the baseline.
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Model With Generated Cues Baseline Improvement Growth Rate

GlobalModel 0.881 0.673 0.208 +30.91%

LocalModel 0.898 0.640 0.258 +40.31%

TransferModel 0.705 0.521 0.184 +35.32%

Table 6.17: Results of EX_F_4 with Generated Cues by BART on Cohen’s Kappa

6.4 EX_WN: Large-Scale Detection

The best performance of the synthetic features and the basic level annotation in the dataset

are used to train the final classifier to detect the basic level in WordNet. The synthetic

features include the eight structural features in Section 4.2, frequency features from Google

Ngram in the time period of 50 years and 100 years, and semantic features from generated

cues and the cue validity. Under entity.n.01 in WordNet, 74, 374 synsets are labelled with

the basic level or the non-basic level.

From the prediction results, there are 9, 085 synsets predicted as the basic level by the

classifier. Approximate 12.2% of the synsets belong to the basic level. This proportion

is less than that in the basic level annotation dataset, which is 20.8% of the concepts

annotated with the basic level by agreement of the three annotators. Two similar datasets

of the basic level created by automatic prediction are from Hollink et al. (26) and Henry

(14). Both of them predicted the basic level under entity.n.01 in WordNet. For validation,

we can compare our dataset with theirs. Hollink et al.’s consists of 9, 819 basic level

concepts. The amount is close to our detection. We have 7, 872 basic level concepts in

common taking up 86.6% of our dataset. Henry’s predicted basic level dataset has 15, 401

basic level concepts, which is almost twice larger than ours. There are 8, 588 shared basic

level concepts between ours and Henry’s, taking up 94.5% of our predictions. Henry’s

agrees on more basic level concepts in our dataset than Hollink et al.’s as a larger amount

of basic level concepts in Henry’s dataset.
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Discussion

7.1 Comparing Corpus Characteristics

7.1.1 Discourse Type, Target Audience, and Size

SQ1: To what extent the discourse type and target audience of a corpus considering its size

would affect the performance of predicting the basic level?

From the results of the experiments in Section 6.1, corpus characteristics do affect the

performance of the prediction, which implies corpora with different characteristics can lead

to different accuracy. However, the differences are not significant among the discourse type

of written and spoken as well as the target of general audiences and children. Moreover,

performance under the GlobalModel, the LocalModel, and the TransferModel does not

always show the same best corpus. Corpus characteristics do not have a stable nor definitive

influence on the performance of predicting the basic level. Nevertheless, the basic level can

still be learned from the corpus characteristics.

With different sizes, intuitive thinking is that performance would be better with a larger

corpus. However, it is not the case in concept frequencies from the corpora for predicting

the basic level. There is always some unexpected drop in performance when the size

goes larger. The good news is that a larger size of one frequency source could perform

more reliable results with low variances. This finding keeps the same as Henry’s (10).

Performance goes up with a decreasing variance in the TransferModel and the GlobalModel

is a good sign to predict the basic level in a large-scale hierarchy.

When comparing the corpus characteristics considering the size, we can discover some

patterns and relationships from the tests in Section 6.1.2. In most cases, performance is

improved with the corpus size increased using written corpora and general audience corpora

in the LocalModel and the TransferModel. However, spoken corpora and corpora specific
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to children do not have this characteristic. Moreover, children corpora even perform worse

with a larger size in the GlobalModel and the TransferModel. Comparing under the same

size, although it is hard to say which type of corpora performs better in the LocalModel,

we can see written corpora tend to perform better than spoken ones and corpora to general

audiences do better than ones specific to children in the LocalModel and the TransferModel.

Especially, with a larger size, the performance of written corpora to general audiences

stands out and is significantly better than that of the other corpus characteristics. That

is why we adopt Google Books Ngram Corpus as the source of concept frequencies.

7.1.2 Google Books Ngram Corpus

As discussed, Google Books Ngram Corpus is a suitable source of concept frequency features

considering the size because it is a written corpus whose target is general audiences. The

time period when calculating frequencies in Google Ngram can stand for an accumulated

amount of tokens varying years which contain the same effect as the size of a corpus. From

the results in Section 6.2, it is evident that the performance of predicting the basic level is

improved by the frequency features from Google Ngram. That is to say, we can effectively

learn the basic level from a large general written corpus.

Analyzing the time period, neither Cohen’s kappa nor balanced accuracy has a firm

dependency on the time period. It implies that the frequency features from Google Ngram

can be used without especially considering the corpus size. Additionally, the size of Google

Ngram in one year is large enough and there is a factor that habits of using language

change over time for humans. We find that the time period of the recent 50 years and 100

years resulted in the best performance among the three models. The aggregation methods

of mean and maximum do not matter too much in most cases. Only the GlobalModel in

the experiments, the maximum of frequencies performs better than the mean. Conducting

feature selection and comparing the importance of each feature, we do not find which

aggregation stands out. It remains further research to study the frequency aggregation in

Google Ngram.

With the best combination of the features, frequency, as one of the synthetic features,

can help to learn the basic level and improve the performance, as shown in Table 6.14.

The frequency features from Google Ngram enhance Cohen’s kappa approximately by 10%

compared to the baseline.
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7.2 Generative Semantic Features

SQ2: What new features concerning semantics can be generated to help improve the per-

formance of predicting the basic level?

There are word embeddings and cues, which contain semantics, generated to be used

as features to predict the basic level. From the results in Section 6.3, both of them after

feature extractions are effective to improve the performance of predicting the basic level

with the benchmark Random Forest classifier.

Word embeddings by Word2vec implicitly represent the semantics of concepts in their

vectors. The method of extracting concept distances can make the semantics explicitly by

the similarity between a concept and its direct hypernym(s). Using this method, we can

obtain the distance between the basic level and its direct hypernym . We can then learn the

basic level from these distances. Compared to the baseline in Table 6.16, word embeddings

with the distance-based feature extraction can improve the performance. Frustratingly,

there is only a little improvement with word embeddings. This distance can definitively

represent some semantic properties of the basic level. However, the basic level concepts

have few of these semantic properties in common and are less distinctive from non-basic

level concepts’. The result for the LocalModel shows the least improvement which implies

the semantic distance is less significant even within the same domain. It indicates that using

the distance to represent semantics from word embeddings only has a limited contribution

to predicting the basic level.

Cues generated by the fine-tuned BART are used to calculate the cue validity. It com-

bines the concept’s semantics and the definition of the basic level. By the same fine-tuned

model, generation quality and criteria are the same for cues of different concepts. Accord-

ing to Section 4.4.2, the basic level concepts have the highest cue validities in a hierarchy.

We can learn the basic level from the cue validity. Specifically, the range or the threshold

of cue validities of the basic level concepts can be learned by the Random Forest classifier.

From Table 6.17, the cues generated and the cue validity as the semantic features can

effectively improve the performance of predicting the basic level. Performance improves

the most in the LocalModel because cues of the basic level concepts in a specific domain

tend to share the common features, hence, cue validities of them are similar within the

same domain. Concepts across domains help to improve the generalization of the classifier.

Therefore, improvement in the GlobalModel and the TransferModel is huge. Cohen’s kappa

in the TransferModel exceeds 0.7 for the first time which is even greater than some of the

best performance with other methods including the baseline. Moreover, the growth rate
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in the TransferModel suggests a good generalization ability of the cue generation and the

cue validity which gives the confidence to detect the basic level in a large-scale hierarchy.

7.3 Large-Scale Detection

SQ3: How much would corpus characteristics and synthetic features improve basic level

detection in a large-scale hierarchy?

Dataset of predicted basic level concepts under entity.n.01 in WordNet is compared

with the related research in Section 6.4. There are many concepts in common predicted

as the basic level between our dataset and theirs. It indicates that most of the basic level

concepts detected by the corpus characteristics and the synthetic features are agreed upon.

Although it might be easy to compare our method to others with the same annotated gold

standard of the basic level in a small dataset, there is no standard of the basic level for

validation in WordNet. We are not able to confirm the concepts are correctly predicted

to be the basic level. Despite that, the basic level effects would be mostly discovered with

widespread agreement (10). Our basic level dataset is relatively small but covers most of

the concepts in agreement with Hollink et al.’s and Henry’s. It turns out that the method

in this thesis has good sensitivity to detect the basic level.

Furthermore, the concepts that are agreed to be the basic level by multiple methods

or datasets have more possibilities of being basic level concepts. Therefore, our dataset,

Hollink et al.’s and Henry’s data can be used together to decide whether a concept is the

basic level, like three annotators. It is available to reuse for future research or development

on KOS applications and the Semantic Web.

7.4 Limitations

When comparing the corpus characteristics, KBNC, a written corpus specific to children,

has a relatively small size. It shows good performance but we do not have larger corpora

for children in written discourse. Plus, the size of BNC is around a hundred times bigger

than the size of KBNC. These make the comparison and analysis of the target audience

not convincing sufficiently even performing the Wilcoxon rank-sum test with Bonferroni

correction. The ideal frequency sources for the experiments would be corpora with different

discourse types and target audiences in the same or similar total size. Using these corpora

can avoid the dilemma in Section 6.1.2.4 that the lack of children-specific corpora in a

larger size.
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7. DISCUSSION

Acquisition of concept frequencies from Google Ngram Viewer is a time-consuming pro-

cedure for regular sleeping while posting requests. Although we designed an automatic

crawler with the optimal sleeping policy, it still spends 10 days to obtain and aggregate

the frequencies of 74, 374 concepts in WordNet. There needs a more efficient approach

to have frequency features from Google Ngram Viewer in terms of feature acquisition, se-

lection, and aggregation. Otherwise, finding and validating a large written and general

audience corpus would be an alternative approach to save processing time.

No gold standard for validating the predictions of the basic level in WordNet makes it

hard to prove how much exactly corpus characteristics and the synthetic features improve

basic level detection in a large-scale hierarchy. It has been found that the basic level effects

are observed when the agreement of the basic level is universal (10). However, we only have

two datasets of predicted basic level concepts. The agreement among the three predictions

might be not significant to make sure to predict the basic level correctly because these

three machine learning-based methods might have common defects. Therefore, it would

be better to have a comparison with the predicted basic level dataset under entity.n.01 in

WordNet.

7.5 Future Work

The methods and findings provided in this thesis can help to develop an automatic basic

level detection system for KOS applications and lay the foundation for further research on

predicting the basic level. The future work can be imagined in aspects of machine learning

for a better classifier and a group of applications potentially using the basic level.

With regard to machine learning, the binary classification task of predicting whether a

concept is the basic level or not could upgrade to a multi-class task. Some practical classifi-

cation criterion can be formalized, such as a concept being the basic level, a superordinate

concept, or a subordinate concept. The prediction model could further be a regression

model which can give a score to evaluate how much probability one concept is the basic

level. This will be a quantitative method to tell how confident humans would regard a

concept as the basic level. The methods for predicting the basic level only perform rela-

tively well on training sets and validation sets but not robustly on a large scale with many

domains in the real world. The generalization of models remains to be improved. Other-

wise, the basic level theory and its benefits are difficult to be implemented in a production

environment.
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7.5 Future Work

In terms of applications, basic level detection has a good prospect as a system of pre-

dicting the basic level from knowledge graphs and is used to set up better cognitive appli-

cations. Introduced the basic level theory and concepts into the field of computer vision,

traditional image repositories, like ImageNet, could enhance their content-based image

processing functions. As for Semantic Web, basic level concepts could help ontology to

organize linked data and to better perform word sense disambiguation with knowledge

graphs. They can provide a better user-machine interface and a cognitive interaction

based on machine-readable techniques.
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Conclusion

The Thesis studies corpus characteristics and synthetic features in predicting the basic

level. The corpus characteristics include the discourse type, target audience, and size of

a corpus. Reflecting on the first sub-research question, they do affect the performance of

predicting the basic level. Considering the size of the corpus, written corpora to general

audiences tend to perform the best, especially in a larger size. In addition, the frequency

features from Google Books Ngram Corpus further improve the performance. Answering

the second sub-research question, the distance-based features from word embeddings and

cues generated by the fine-tuned BART, which belong to the semantic features, can improve

the performance of predicting the basic level. Moreover, the cue validity of a concept

calculated from the generated cues enhances the performance to a large extent.

We also propose a method to learn the basic level from synthetic features and to detect

basic level concepts in WordNet. The synthetic features consist of structural, frequency,

and semantic features. Compared to similar research and its predictions, our method shows

good sensitivity to detect the basic level in a large-scale hierarchy. However, to answer

the third sub-research question, it requires a gold standard of the basic level in WordNet,

which as far as we notice does not exist yet. Instead, we compare our results with two

datasets of predicted basic level concepts and can regard the concepts agreed upon in two

datasets as the basic level. The basic level concepts predicted by our method are made

available for future study.

With the three sub-research questions, we can answer the main research question. We

can learn the basic level from natural language corpora with various characteristics and

synthetic features. Moreover, the semantic features as one of the synthetic features con-

tribute much to improving the performance of basic level detection.
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Appendix

A Results in EX_F_1: Structural Features

Train On Test On Cohen’s Kappa Balanced Accuracy

All 5 domains All 5 domains 0.677 0.839

Table 8.1: Results of EX_F_1-GlobalModel

Train On Test On Cohen’s Kappa Balanced Accuracy

edible fruit edible fruit 0.865 0.928

hand tool hand tool 0.815 0.918

musical instrument musical instrument 0.571 0.779

furniture furniture 0.427 0.725

garment garment 0.525 0.771

Average 0.640 0.825

Table 8.2: Results of EX_F_1-LocalModel

Train On Test On Cohen’s Kappa Balanced Accuracy

edible fruit, musical instrument, furniture, garment hand tool 0.715 0.881

hand tool, musical instrument, furniture, garment edible fruit 0.809 0.917

hand tool, edible fruit, furniture, garment musical instrument 0.532 0.760

hand tool, edible fruit, musical instrument, garment furniture 0.304 0.746

hand tool, edible fruit, musical instrument, furniture garment 0.244 0.708

Average 0.521 0.802

Table 8.3: Results of EX_F_1-TransferModel
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APPENDIX

B Results in EX_W_x: Wilcoxon Rank-Sum Test

B.1 EX_W_0

B.1.1 GlobalModel

Figure 8.1: Averaged Metrics of EX_W_0-GlobalModel

Figure 8.2: Overall Performance of EX_W_0-GlobalModel
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B Results in EX_W_x: Wilcoxon Rank-Sum Test

Corpus 1M 2.4M 5.7M 100M

BNC 0.843 0.843 0.842 0.850

CHILDES 0.841 0.845 0.846

CABNC 0.840 0.840

KBNC 0.848

Table 8.4: Averaged Balanced Accuracy of EX_W_0-GlobalModel

B.1.2 LocalModel

Corpus 1M 2.4M 5.7M 100M

BNC 0.833 0.836 0.837 0.842

CHILDES 0.830 0.832 0.833

CABNC 0.829 0.833

KBNC 0.827

Table 8.5: Averaged Balanced Accuracy of EX_W_0-LocalModel

Figure 8.3: Averaged Metrics of EX_W_0-LocalModel
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APPENDIX

Figure 8.4: Overall Performance of EX_W_0-LocalModel

B.1.3 TransferModel

Corpus 1M 2.4M 5.7M 100M

BNC 0.811 0.815 0.816 0.814

CHILDES 0.809 0.808 0.806

CABNC 0.796 0.799

KBNC 0.810

Table 8.6: Averaged Balanced Accuracy of EX_W_0-TransferModel
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B Results in EX_W_x: Wilcoxon Rank-Sum Test

Figure 8.5: Averaged Metrics of EX_W_0-TransferModel

Figure 8.6: Overall Performance of EX_W_0-TransferModel
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APPENDIX

B.2 EX_W_1

Corpus Size CABNC CHILDES BNC

1M-2.4M 0.885 0.000 0.817

1M-5.7M 0.000 0.859

1M-100M 0.000

2.4M-5.7M 0.534 0.609

2.4M-100M 0.000

5.7M-100M 0.000

Table 8.7: P-values of EX_W_1-GlobalModel on Balanced Accuracy

Corpus Size CABNC CHILDES BNC

1M-2.4M 0.000 0.114 0.002

1M-5.7M 0.010 0.001

1M-100M 0.000

2.4M-5.7M 0.066 0.337

2.4M-100M 0.000

5.7M-100M 0.000

Table 8.8: P-values of EX_W_1-LocalModel on Balanced Accuracy

Corpus Size CABNC CHILDES BNC

1M-2.4M 0.000 0.609 0.033

1M-5.7M 0.974 0.006

1M-100M 0.041

2.4M-5.7M 0.957 0.237

2.4M-100M 0.533

5.7M-100M 0.831

Table 8.9: P-values of EX_W_1-TransferModel on Balanced Accuracy
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B Results in EX_W_x: Wilcoxon Rank-Sum Test

B.3 EX_W_2 EX_W_3

Corpus Size Written Spoken General Children

1M-2.4M 1.000 0.007 0.919 0.223

1M-5.7M 1.000 0.000 0.347 0.226

1M-100M 0.000 0.000

2.4M-5.7M 0.609 0.000 0.109 0.534

2.4M-100M 0.000 0.000

5.7M-100M 0.000 0.000

Table 8.10: P-values of EX_W_2 and EX_W_3-GlobalModel on Balanced Accuracy

Corpus Size Written Spoken General Children

1M-2.4M 0.000 0.000 0.000 0.000

1M-5.7M 0.000 0.000 0.000 0.000

1M-100M 0.000 0.000

2.4M-5.7M 0.337 0.004 0.002 0.066

2.4M-100M 0.000 0.000

5.7M-100M 0.000 0.000

Table 8.11: P-values of EX_W_2 and EX_W_3-LocalModel on Balanced Accuracy

Corpus Size Written Spoken General Children

1M-2.4M 0.000 0.104 0.012 0.000

1M-5.7M 0.000 0.000 0.000 0.000

1M-100M 0.001 0.000

2.4M-5.7M 0.237 0.001 0.000 0.957

2.4M-100M 0.533 0.000

5.7M-100M 0.831 0.831

Table 8.12: P-values of EX_W_2 and EX_W_3-TransferModel on Balanced Accuracy
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B.4 EX_W_4

Corpus Characteristics 1M 2.4M 5.7M

Written - Spoken 0.000 0.345 0.998

General - Children 1.000 1.000 0.998

Table 8.13: P-values of EX_W_4-GlobalModel on Balanced Accuracy

Corpus Characteristics 1M 2.4M 5.7M

Written - Spoken 0.465 0.000 0.000

General - Children 0.004 0.000 0.000

Table 8.14: P-values of EX_W_4-LocalModel on Balanced Accuracy

Corpus Characteristics 1M 2.4M 5.7M

Written - Spoken 0.000 0.000 0.000

General - Children 1.000 0.983 0.000

Table 8.15: P-values of EX_W_4-TransferModel on Balanced Accuracy

C Results of Frequency Feature From Google Ngram in EX_F_2

C.1 GlobalModel

Figure 8.7: GlobalModel Performance of Frequency Features from Google Ngram
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C Results of Frequency Feature From Google Ngram in EX_F_2

The best performing frequency feature setting from Google Ngram in GlobalModel is 50

year maximum, 100 year maximum, 400 year mean, and 500 year maximum. The impor-

tance in the Random Forest classifier is as follows:

Feature Importance

normalized depth 0.355

normalized gloss length 0.142

shortest lemma length 0.106

normalized # part-whole relations 0.076

500 year maximum 0.075

100 year maximum 0.054

50 year maximum 0.044

# total hyponyms 0.044

maximal # polysemies 0.040

400 year mean 0.033

# lemmas 0.028

# direct hypernyms 0.002

Table 8.16: Importance of the Features in GlobalModel

C.2 LocalModel

Figure 8.8: LocalModel Performance of Frequency Features from Google Ngram

The best performing frequency feature setting from Google Ngram in LocalModel is 100

year maximum and 400 year mean. The importance in the Random Forest classifier is as

follows:
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Feature Importance

normalized depth 0.264

shortest lemma length 0.173

normalized gloss length 0.166

# total hyponyms 0.165

100 year maximum 0.089

maximal # polysemies 0.052

400 year maximum 0.047

# lemmas 0.030

normalized # part-whole relations 0.011

# direct hypernyms 0.003

Table 8.17: Importance of the Features in LocalModel

C.3 TransferModel

Figure 8.9: TransferModel Performance of Frequency Features from Google Ngram

The best performing frequency feature setting from Google Ngram in TransferModel is 5

year mean, 50 year mean, 100 year mean, 200 year maximum, and 500 year maximum.

The importance in the Random Forest classifier is as follows:
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C Results of Frequency Feature From Google Ngram in EX_F_2

Feature Importance

normalized depth 0.349

normalized gloss length 0.143

shortest lemma length 0.115

500 year maximum 0.078

normalized # part-whole relations 0.067

200 year maximum 0.046

maximal # polysemies 0.043

100 year mean 0.036

50 year mean 0.035

# total hyponyms 0.031

5 year mean 0.030

# lemmas 0.025

# direct hypernyms 0.002

Table 8.18: Importance of the Features in TransferModel
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