
Large Scale Data Engineering: Deep Locations

Group 03

November 1, 2020

C. Lin
Department of Computer
Science, Vrije Universiteit

Amsterdam
1081 HV Amsterdam

The Netherlands
c2.lin@student.vu.nl

H. Wang
Department of Computer
Science, Vrije Universiteit

Amsterdam
1081 HV Amsterdam

The Netherlands
h5.wang@student.vu.nl

K. Ma
Department of Computer
Science, Vrije Universiteit

Amsterdam
1081 HV Amsterdam

The Netherlands
k.ma@student.vu.nl

ABSTRACT
This paper describes a project development procedure and
its result of a five-week-long practical assignment in the
Large Scale Data Engineering (LSDE) course at Vrije Uni-
versiteit Amsterdam. The assignment tackles a photo ge-
olocation task by using Yahoo Flickr Creative Commons
100 Million (YFCC100M) dataset and the deep learning
model. This Paper would further outline how the images
in YFCC100M can be efficiently accessed in the Amazon
S3 bucket rather than downloading images by Flickr uni-
form resource locator links. Moreover, more than 410402
images have been inferred by our model; a website applica-
tion was also created for showing our prediction accuracy,
and for users to compare the ground truth coordinate with
the model predicted coordinate of the images.

1. INTRODUCTION
Predicting the GPS location of images is an extremely

challenging task since many images often contain only a few
information or ambiguous cues about their location. For in-
stance, an image of a forest could be taken in many similar
places in mountains around the world. Humans can use their
worldwide geographical knowledge, the cues like the country
flags, the language of street signs, or the human race in the
images to infer the location of an image. There is an online
website application like Geoguessr1 for users to guess the
location of several street view images. It is not surprising
that few of us can perform well while inferring the correct
location of images by our geographical knowledge. Even
with worldwide geographical knowledge, this guessing task
is still challenging for humans. Therefore, predicting the
GPS location of images through computer vision methods
arouses computer scientists’ interest. However, lots of tradi-
tional computer vision methods lack this kind of worldwide
geographical knowledge, restricted by the features of data
during training. In contrast, our goal of this assignment is
to localize any type of images by our deep learning model.
We consider this task as a classification problem and divide

1Geoguessr: https://www.geoguessr.com

the earth into lots of geographical cells which construct the
classes. We then train a residual neural network (ResNet)
using geotagged images in the YFCC100M dataset.

In this paper, we will first introduce some related work
which gives us enormous inspiration and useful methods to
tackle this assignment problem. Afterward, the comprehen-
sive method of achieving our goal will be described. This
would be done by mentioning the architecture we used for
this assignment, after which the procedure of data analysis
and sampling would be noted. Next, the pipeline which con-
sists of four parts; data processing, accessing images through
Amazon S3 bucket, training model, and inferring images
would be explained. After this, the result of the experi-
ments and the comparison with other similar works would
be shown. Last but not least, the function of our visualiza-
tion website would be introduced, the conclusion and discus-
sion of this task would be given. The appendix offers some
additional information and the contribution of the authors
to this assignment.

2. RELATED WORK
In this section, we will describe several related works for

this project, and focus on two of the research papers that
are closely related to our project’s objective. These two
academic papers did provide us with substantial insights
into our assignment.

Some related work had been restricted to specific con-
ditions or environments so that they could only focus on
limited subsets of problem, like cities [7, 10], or landmark
buildings [12, 1]. However, in this project, we would like to
implement a metric that can infer any of the images taken on
the earth without any restrictions. After seeking the planet-
scale geolocalization works which are more closely related
to our project’s objective, Im2GPS [2] and PlaNet [9] came
into our views. IM2GPS was introduced by Hays and Efros,
they match a query image based on global image descriptors
to refer to the dataset of six million GPS-tagged images,
and pick the closest match. However, this kind of retrieval
method may not meet our project’s goal and setting. PlaNet
was introduced by Weyand et al. [9], and was a deep learn-
ing model that could classify the images’ geolocation with

1



amazing accuracy. They treated the geolocalization task as
a classification problem. The surface of the earth was prop-
erly subdivided into geographical cells which assign to the
specific classes. They then train the Convolutional Neural
Networks (CNN) model by using 91 million geotagged im-
ages. The training process took them 2.5 months on 200
CPU cores using the DistBelief framework. Indeed, this re-
search paper gave us deeper insight into implementing our
project and shed light on some aspects that are relevant to
our project. However, the number of resources they used
and the time they took may not meet our project setting.

In the meantime, we found out many other similar meth-
ods for this task introduced by Eric et al. [11] in 2018, which
uses a much less training dataset than PlaNet yet still out-
performed at the geolocalization task. They introduced an
advanced method based on the PlaNet concept, which ex-
ploits the geographical hierarchical knowledge of multiple
geo-partitionings and takes the image’s scene into consid-
eration, such as urban, indoor, natural. They proved the
effectiveness of their method by using a much lower number
of training images. The training images of their work are
less than 0.47 million images while the PlaNet used about
91 million for the training process. Therefore, we consider
the approach introduced by Eric et al. [11] as the most
effective way and related work for our project.

To conclude, the related work of tackling the geolocal-
ization problem could be divided into two categories: (1)
metrics restricted by certain conditions - landmark build-
ing, cities, streets, etc. (2) approaches to classify images
in the worldwide range without any restrictions. We fo-
cus on the latter category and find out two of the related
work (PlaNet[6] and Eric et al. [11] work) which could offer
us deep inspiration and implementation knowledge for our
project. Moreover, the setting of Eric et al. [11] work is more
similar to our project. Therefore, Due to the effectiveness of
their approach, we aim to use the geographical hierarchical
knowledge of multiple geo-partitionings introduced by them
to improve our performance of prediction accuracy in this
geolocalization task.

3. RESEARCH QUESTIONS
The following sections will describe the methodology of

our DeepLocation project in detail. To better understand
the method that we use to realize the project’s goal and il-
lustrate the advantages of technologies for Big Data in Deep
Learning, we firstly state our main architecture of the system
and implement tools. Secondly, we will present the analysis
of datasets by sampling some records. Thirdly, the pipeline
of the project will be described in detail which contains four
parts to aim at requirements. These four sections are as fol-
lows: data processing, person removal, model building, and
prediction GPS.

To achieve the goal of the project, the following research
questions should be answered:

• How could we efficiently obtain the images from Flickr
or AWS S3 bucket?

• Which method or deep learning model should we use
for pursuing higher performance in prediction?

• After training models, how do we efficiently do infer-
ence for images in such a large dataset?

Table 1: Basic configuration of the instances
Instance vCPUs Memory GPU Networking

m4.2xlarge 8 32 GiB - high
i3.xlarge 4 30.5 GiB - 10 Gbps

g4dn.xlarge 4 16 GiB NVIDIA T4 25 Gbps

4. ARCHITECTURE
The development of the DeepLocation project mainly is

based on Databricks, an open and unified data analytics
platform. Databricks is a web-based platform providing de-
velopers and scientists with an interface of Spark framework
and implement programs on notebooks. It provides a data
science workspace, which is a collaborative environment for
us to manage and run our scripts. With the basic configure,
the platform has the Spark engine both in Python and Scala
programming language. Databricks has a friendly user in-
terface for coding in a notebook and worker status viewing
in logfiles or the Spark UI.

It is separated from storage and computing clusters both
using Amazon Web Service. Amazon Web Service (AWS)
is a cloud platform not only providing infrastructure tech-
nologies like compute, storage, and databases. The data
including metadata and image dataset are stored in Ama-
zon S3, Simple Storage Service. Amazon S3 is an object
storage service that offers scalability, data availability, secu-
rity, and performance. The data we use is mounting from
the public S3 bucket to ours and managed in the Databricks
File System. All the computations are executed on clusters
of the Amazon EC2, Elastic Compute Cloud. Amazon EC2
is a web service that provides resizable compute capacity
in the cloud. In the data processing stage and some of the
prediction stages, we use the type of m4.2xlarge instance as
a driver and i3.xlarge instance as workers.

For the driver, the m4.2xlarge is a balance of computing,
memory, and network resources like the web server in the
Databricks. For the workers, each i3.xlarge instance pro-
vides instances optimized for low latency, very high random
I/O performance, high sequential read throughput. Both
two instances have very high networking performance. Data-
bricks can dynamically reallocate workers to be suitable for
the characteristics of our job. With autoscaling in 16 work-
ers, it allows us to run the scripts maximal on 16 instances,
the same as one machine with 64 cores. In the stage of
building the model and the stage of DeepLocation, we use
a GPU-based node g4dn.xlarge to speed up our deep learn-
ing model training task. The instance g4dn.xlarge (beta)
can help accelerate deep learning training or inference and
graphics-intensive workloads. The basic configuration of the
above instances is shown in Table 1.

The main framework adopted in the project is Apache
Spark. Spark is a computation engine and distributed clus-
ter computing framework for large scale data processing. It
provides high-level APIs in Scala and Python. It also sup-
ports a rich set of tools including PySpark library and Spark
SQL package for structured data processing. Databricks
provides users with a high-level of Spark configuration in
drivers and workers. The complex configuring work has al-
ready done when creating Databricks cluster both in python
interpreter and Java virtual machine for Scala.

2



Table 2: The description of dataframe
Column name Datatype Adopt

media id bigint
user nsid string
user name string
date taken string

date uploaded int
device string
title string

description string
user tag string

machine tag string
longitude double X
latitude double X

geo accuracy int
media url string

download url string X
license name string
license url string
sever id int
farm id int
secret string

secret ori string
extension ori string
media type int X

5. DATA SAMPLING AND ANALYSIS
In this part, we will investigate the data related to the

project. As mentioned in the introduction, DeepLocation is
using images to predict the most possible geographic coor-
dinates that indicate the location where images are taken.
Therefore, the final objects we process are data of images
and their geographic information. There are numbers of
public datasets that have images along with their informa-
tion, like Open Images published by Google and Facebook
social media. We use the YFCC100M [8] dataset in the
project, which is released by Yahoo Flickr.

The YFCC100M is an abbreviation of the Yahoo Flickr
Creative Commons 100 Million Dataset. We notice that
YFCC100M is the largest publicly and freely useable multi-
media collection, containing the metadata of around 99.2
million images and 0.8 million videos from Flickr, all of
which were shared under one of the various Creative Com-
mons licenses. The metadata is originally distributed through
AWS and hosted in an S3 data bucket. Mounting the meta-
data, it is compressed and divided into BZ files total around
15GB. Mounting the multimedia commons data, the images
take up approximately 13.5 TB at default pixel resolution.
It would be much easier and faster to launch an EC2 in-
stance and process the images directly from the S3 bucket.

Initially, we take one of ten in metadata files and sample a
fraction of 0.003 to investigate the original data schema de-
tailly. After parsing, we have a dataframe with 23 columns
and 29,988 rows of records which contain the full information
about multimedia from Flickr. To the requirement of our
project, it is not necessary to utilize every column. More-
over, there are some missing data in important columns.
The schema of the dataframe is listed in Table 2. Each me-
dia record included in the dataset is represented by its Flickr
identifier, the user who created it, the camera that took it,

Figure 1: The distribution of images in Flickr

the time it was taken and uploaded, the location where it
was taken (if available), and the Creative Commons license
under which it was published. The title, description, and
tags are also available. Together with viewing and down-
loading a uniform resource locator, they are convenient to
check on the browser. However, it can be missing in the
Flickr server or the database. We randomly choose 3,000
image download links. Fortunately, only one image in the
S3 bucket cannot be accessed successfully. We access manu-
ally in the DBFS to find that the image file is disappeared.

Querying in detail, we find more features of the YFCC100M
dataset in category and amount. Totally, the full metadata
has 99,959,167 rows. Among these, there are 48,366,323 im-
ages and 103,506 videos in the metadata dataframe that
have been annotated with geographic coordinates, either
manually by the users or automatically through devices record-
ing the latitude and longitude. The original distribution of
geography is shown in Figure 1. We only need lines showing
images with GPS information and the way of accessing the
exact files in Amazon S3. Therefore, we take columns of
longitude, latitude, download url, and media type to form a
new dataframe as the main processing object and save as a
comma-separated-value file.

6. PIPELINE
In this subsection of the method, we will demonstrate

the pipeline of the whole development in the DeepLocation
project which starts from the metadata and ends with giving
the image’s GPS location. There are four stages of imple-
mentations: the first is processing with the metadata and
image files, the second is removing person portraits from the
dataset, the third is building the core model inputting im-
ages then outputting geographic information, and the last
stage is predicting the geographic coordinates of images by
the hierarchy structure.

6.1 Data processing
In the part of data analysis and sampling, we have il-

lustrated that the data we use is metadata in the comma-
separated values file and images in the S3 bucket. There-
fore, it is comprehensive that we deal with the metadata and
images. What’s more, we must find out the connection be-
tween a concrete media record and its corresponding image
to access the valid and correct one. And delete the missing
images and empty files.

3



6.1.1 Clean the metadata
The previous sampling reveals the fact that we do not

have to load and use all the columns in the metadata file.
It could not only increase the time of processing but occupy
too much space on memory and storage. As analyzed be-
fore, we adopt columns of longitude, latitude, downloadable
link, and media type mark to create a new dataframe for all
over the metadata and save as comma-separated-values files
in snappy-parquet. Thanks to Delta Lake, one data lake
which provides ACID transactions, scalable metadata han-
dling, and batch data processing, we can have faster access
and writing speed.

Next, we must confirm every record has full and valid in-
formation in columns. There have been several cases that
miss either latitude or longitude or neither to be found.
Geographic coordinates are the most important represen-
tative data of the project in later modeling. We eliminate
such rows that show null value in the arbitrary one col-
umn. Then, we have complete geography information of
each record about the multimedia.

According to the aim of the DeepLocation, we focus on
the images but not videos. It is suggested that records on
videos are needless for the project. That is why we keep
the media type mark in pre-processed metadata. We can
do further to purify our metadata by deleting video rows
whose media type mark is integer 1. Thereafter, we drop
the column of media type mark because all the rows are
images and it can reduce compute resources.

6.1.2 Access images in S3
The ideas of accessing images are in two ways. The first is

to using download uniform resource locators showing in the
metadata directly. Most groups obtained images in this way
before and they took an average of four days to download
images. We suppose that it will take much time and not
fit our expectations. While sampling, there are indeed some
of the images missing or being rejected to access. We take
the second way. We use multimedia commons data mount-
ing in the S3 by accessing images via its absolute path in
Databricks file system.

Conducting to access images via the absolute path in S3,
one obstacle is to obtain the path. We find that the im-
age file name in S3 multimedia commons is an MD5-hashed
name. With the basic cognizance, MD5 is used to make
the data more anonymous and easier to manage in the file
storage system. By testing and trying numbers of times,
we notice that the plain code of the MD5-hashed file name
is right download uniform resource locators in the columns
from our processed metadata. Fortunately, we can use the
message digest class in Scala to run MD5 encoding on the
dataframe in parallel. We now have the MD5-hashed name
of every image in bytes. However, they need some modifi-
cation before we use them to access images in the S3.

We discover that the original MD5-hashed code maybe not
the same as whose corresponding file name in the S3. Actu-
ally, the reason is a type of mandatory conversion problem
by Amazon when gathering the whole images. The normal
file name is a string; however, we have built a bytes-based
MD5-hashed code. Regularly, it is obvious to read bytes to
a string. There is an issue that byte and string have dif-
ferent allocations in the memory. In the memory, the unit
of byte occupies 8 bits while a string unit occupies 16 bits.
But Amazon regards as the same in encoding. We raise a

converting work, making MD5-hashed file name from bytes
to a string. The key point is to set the format string back
to only one position intentionally. That is why the image
file names in the S3 may lack several “0”. They are default
values when occurring vacancies of bytes units.

Then, we notice that the file is stored in a double folded
directory. It is intuitive to know that the relative directory
is separated every first three characters of the image file
name. We take a slice of a string of file names to represent
the relative directory.

By now, we can get the correct relative path of images
plus the file names. we do the above work defining in one
function and fit it in Spark to execute on every row of the
dataframe in metadata concurrently.

6.1.3 Image existence verification
Although we have been able to locate each image in the

S3, it is unknown that the image whether exists or has valid
data content. Image files losing is acceptable for various
reasons, like unrecoverable read error and storage failure.
For example, in the multimedia commons bucket, the files
in /data/images/ac8 are all lost because even this directory
is missing. It leads to at least 420 images in that directory
disappeared.

The rows in the metadata like that are useless in future
deep learning model training. On the contrary, they might
be harmful to training when having a file not exists excep-
tion. As a result, the procedure of training might abort
suddenly. For the robustness of building the model, we here
deploy an image existence verification to detect whether the
file paths shown in the processed metadata can be accessed
in the S3. If raising the file does not exist exception, we will
delete this row immediately. In this way, we can make sure
that all left rows can be accessed normally.

Only doing the image file existence verification is not com-
plete. In the test of sampling and tiny scale of dataset trying,
there is a small number of images pass the existence verifi-
cation, however, the operating system shows that they are
empty. We turn to find out such image files. It is unbeliev-
able that the image is truly existed but do not have pixels
and shows in empty. The obvious feature of such images
is that the file size of them is small, no larger than 1 KB.
The rows in the metadata whose images have empty content
must be ignored because they would take up classes with-
out any geographic information like landscapes, buildings,
or scenes from images.

We implement checking empty images while training and
predicting, not in the stage of the data processing stage.
Because the possibility of accessing an empty image is tiny,
it is a waste of time and computes resources checking every
image individually in this stage. We set an empty list for
such empty images before feeding to the model. In this way,
we reduce the time meanwhile increase the robustness of
training and prediction.

6.1.4 Resize images
We have every image valid accessing so far. Due to images

are from user uploading to Flickr, the size and resolution of
images vary from each other. It is unfriendly to feed these
raw images to TensorFlow-based neural networks. When
feeding images to networks as the input of deep neural net-
works for version, the size, resolution, and shape must be in
the definitive format. We will take three steps to uniform

4



each image to a regular input in color, size, and shape as a
Tensor.

The first step is to decode the image into the float type.
Our function accesses and reads images in the S3. It is de-
coded into three channels for the RGB color model. Then,
the type is converted from image to float, so as to do more
calculation to modify the image. The second step is to do a
random crop on the image in the training set. For a general
model and avoiding overfitting, we set a small range of ran-
dom crop ratio to modify the image only in the training set.
It is a usual measure of training a very large amount and
massive classes image classification model. the last step is
to resize the image to the definitive shape. According to the
input of the Resnet in the neural networks, the shape of an
image must be [224, 224, 3]. For each image, we calculate
the ratios between 224 and actual height and width. Then,
we use resize, a TensorFlow image function, to transform the
size of the image to [224, 224] by the ratio in three channels,
[224, 224, 3].

Besides, the images in the validation set are different from
those in the training set. The resizing step and cropping step
exchange their order in the validation set. And the cropping
method is a fixed center crop. What is more, we set the ratio
of 0.5 more than the definitive [224, 224] and then calculate
the offset to crop. They are the same as we do in prediction.
The reason is that we can have more consistency of input
images for validation and prediction in this way.

6.2 Person removal
DeepLocation aims to provide geographic coordinates from

images which have plenty of scene information or representa-
tive feature about the background. We do not expect many
pixels to display human beings. In other words, the size of
one image is definitive, and more people in the image means
less information on geography. The issue is critical to the
model that inputting images with portraits would have a
huge influence on accuracy. The actual features we need
are from scenes like scenery, landmark, buildings, and so on
in the background. In the sampling, we have experienced
many images with people in them. We consider that the
images are from the social media website. It is common to
have many portraits, selfies, and group photos. When pro-
cessing images with portraits, detection, and removal work
is required.

6.2.1 Face detection
Not all the images have persons in them and not all of

them need to be modified. To enhance the efficiency of
the person removal, we first carry out the detection of the
face in an image. From the previous research [6], the neu-
ral network-based upright frontal face detection is a ma-
ture method to capture faces in any certain image. There
are some public well-trained models of the face. We choose
Stump-based 20x20 gentle Ada boost frontal face detector
[4] in the Open Source Computer Vision Library as the
model of our face detection task.

For each image, we have a simple flow of processing. Using
the OpenCV library, the image can be read from the S3 by
the path in the metadata. We do the grayscale on the image
to reduce the influence of color on detection. Plus, the face
detector is also particular in the greying image. Then, the
image is input to the detector which can give out the result
containing a list of rectangular regions of every face in the

image if it has. Next, we conduct a sum-up of the area in the
face region list. The sum-up value is the total proportion of
faces in the image. As different images may have different
sizes, we calculate the ratio of face regions to the image.
The ratio can represent the influence of person portraits in
images. Deploying this workflow on the metadata, we can
have a new column save the ratio of every image.

6.2.2 Removal strategy
We have known a person’s influence on each image when

training. The measure to reduce such influence mainly is to
eliminate the person in the images. We consider two ways to
do the elimination. One is to circle out the portrait and fill
pixels with noise or the background. The other is to delete
such a row from the metadata.

For the first way, we want to circle out full bodies as well
as close-up views in the presence of clutter and occlusion.
Further, we can use grab cut to remove the portrait and
fill with noise to get the purified image which mostly con-
tains geographic information. The grub cut algorithm [5] is
designed for foreground extraction with minimal user inter-
action. However, during the test it needs python OpenCV
library to do and takes near 2 seconds for one image. We
must give up this way and turn to the second due to too
much time consumed.

The second way is to delete the rows regarded much influ-
ence. After the face detection, we check a few images with
the non-zero ratio. We decide to set a threshold of 3.5%. If
the column “ration” of the row is more than 0.035, we re-
gard that it will have much influence on training the model.
We remove the person in the image by removing this record
of the image from the metadata directly. It is not a rough
handing method but has a good result in the validation of
the training model. The accuracy of the model using person
removal images is 36.9% a little higher than no removing in
35.2%. This is a trade-off between the time consumption
and the accuracy of the model.

6.3 Training the model
Since our approach treats the geolocalization task as a

classification problem, we should make up specific classes
for training. Therefore, we do geo-partitioning which sub-
divides the earth’s surface into plenty of cells. Each cell
represents a certain class so that the model can use it for
classifying. The fineness of partitioning could be controlled
by limiting the number of images in each cell. For instance,
if each cell is able to contain more images, the cell would
occupy a larger area. On the other hand, we also set a
minimum number of images for each cell. If the cells do
not contain more than the minimum numbers of images,
such images are considered unimportant. We would discard
unimportant images since they are often the area like polar
regions or oceans which are hard to classify. In order to
obtain good performance in the stage of inferring by utiliz-
ing the technique of geographical hierarchy, we must create
three partitioning files according to different levels of fine-
ness. Figure 2 shows that we obtain three partitioning files
– sparse one (Geo Cell-C1), medium one (Geo-Cell C2), and
dense one (Geo-Cell C3). Afterward, in the inferring stage,
we can utilize these three different levels of partitioning to
generate a geographical hierarchy from different spatial res-
olutions. The details of the setting in each partitioning file
are as follows in Table 3.

5



Figure 2: Pipeline of geolocalization task

Table 3: The setting of each partitioning files
Partitioning files Fineness Max Min Classes

Geo-Cell C3 Dense 100 5 4103
Geo-Cell C2 Medium 200 5 2428
Geo-Cell C1 Sparse 500 5 1024

We use the transfer learning from the residual neural net-
work, Resnet101V2 [3]. The network can be imported and
loaded in the beginning to conduct the abstraction of image
features. Per-trained model ResNet-101 is a convolutional
neural network that is 101 layers deep. Deeper ResNet en-
coder has produced better results taking performance into
consideration when compared to the shallow. In contrast to
the only one partitioning file method (like PlaNet), a fully
connected layer for all of the cells in three partitioning files
was added. Then an activation SoftMax is linked next for
classifying. The classification loss of three partitioning files
was the mean of loss for each partitioning.

After finishing geo-partitioning for making up the classes,
we then divide 154052 images into training data and vali-
dation data with a ratio of 8:2. Each epoch in the training
process took about 4.5 hours with the checkpoint, and we
would choose the model with the lowest loss for inferring.
Moreover, we also use another dataset for training which was
obtained by our removal strategy mentioned in the section
6.2.2. We will discuss more details about these two mod-
els which contain slightly different datasets in the section of
result.

6.4 Inferring Process
In this section, we would describe the process of inferring

for geolocalization tasks and more details about using the
geographical hierarchy for improving accuracy. We first ex-
plain the condition of only one partitioning file is used for
inferring. In this condition, after training, we would only
use one class probability at a single spatial resolution. For
instance, when we only use the coarse partitioning file for

inferring, the maximum probability of each class label in
this partitioning is used for predicting the cell. However, it
may not perform well in prediction, so we tried to implement
the hierarchical prediction using three partitioning files with
different spatial resolution.

The different maximum numbers of images in one cell were
applied when making up the classes so that we are able to
ensure each class in the finest partitioning file can be con-
nected to a larger cell in both the middle one and coarse one.
Hence, we can create a geographical hierarchy from different
levels of spatial resolution. We then multiply the respective
probabilities at different levels of the hierarchy. As a result,
the finest representation of division could be improved by
utilizing the information from coarser representations. Fur-
thermore, we will describe more details in the result section,
comparing between two different conditions- using only one
partitioning file for inferring, or using hierarchical predic-
tion.

To speed up the inferring work, we decide to use Spark
to predict each row in the metadata. The reason is that the
inference should refer to the information of images in the
dataset. Therefore, the task can run in parallel with Spark.
The metadata is loaded as one dataframe, and every row can
be read as an RDD. The workers of Spark clusters can exe-
cute the inferring job in parallel then collect the prediction
of geographical coordinates and write to a new dataframe as
the result. To be more specific, each method of dataframe
is called to implement the parallelized inferring work.

7. RESULT
In this section, we will demonstrate and analyze the re-

sults of our data products from the pipeline. The model of
classifying images into geographic coordinates will be shown
at first. And the performance of DeepLocation, predicted by
the model, will be illustrated next.

As detailed in the model building of the pipeline, we train
deep learning networks to do a classification task. We use
the processed metadata and images to train our model. The

6



Figure 3: The accuracy of prediction

number of images with geographic coordinates is 154052.
The training is deployed in the g4dn.xlarge instance using a
GPU to speed up the training procedure. The part of image
processing and data loading execute in the CPU. Only the
fitting model uses GPU to compute.

The parameters are explained in Section 6.3, the mini-
mum threshold for the adaptive subdivision is 5. The maxi-
mum thresholds are set 100, 200, and 500. Therefore, there
are 7,555 geo-cells created which are 3.4 times less than
PlaNet’s. Since the adaptive strategy, DeepLocation uses
dynamic cells according to the geographic coordinates of
images. It has a more accurate resolution while decreas-
ing useless cells comparing with the fixed number of cells.
The resulting number of cells for different partitionings to
train are shown in Table 3.

7.1 Comparing models
The result of the geo classification model is the loss in the

validation set and direct prediction accuracy of the testing
set. As mentioned in the Section 6.2.2 removal strategy, two
datasets, which differ in whether has the face ratio of person
portraits above 3.5%, are fed to the deep learning networks
separately. The distance of the predicted geography location
and the ground truth on the map is defined to represent the
accuracy. The ranges of distance can use to evaluate the
precision. The overall results are shown and compared in
Table 4.

With the number of images is reduced slightly after re-
moving, the accuracy of each range is a bit decreased. The
result states that person removal is less effective to improve
the model. Generally, when the quantity of images after re-
moving a person raises, the result suggests that the original
dataset without person removal should be better.

Next, there is some comparison among DeepLocation model
and others introduced in the section of related work, GeoEs-
timation, Im2GPS, and PlaNet.

From the former research [11], GeoEstimation using multi-
ple partitionings has no significant improvement for Im2GPS.
However, DeepLocation and GeoEstimation both exploit the
hierarchical knowledge at different spatial resolutions the lo-
calization accuracy can be indeed further increased. Figure
3 shows the inference of geographic coordinates on the same
criterion in DeepLocation. The DeepLocation shows high
accurate prediction at the distance between the location of
the prediction and the ground truth. Consequently, DeepLo-
cation is to a valid inference of the image’s GPS position.

Last, we evaluate to compare the results of DeepLocation
to the networks from PlaNet(900K) [9]. Table 5 compares
the performance of PlaNet trained with 900,000 images from
Flickr. From Table 5, DeepLocation has the same perfor-
mance as PlaNet on the street and a little lower on the
others. However, the model of PlaNet has a problem with
a bit overfitting. The performance is better on the dataset
with 126M photos with Exif geolocations from Google than
on the datasets from INRIA Holidays and Flickr. While
DeepLocation has more universality to images than PlaNet
in the comparison.

7.2 Prediction with DeepLocation
This subsection will illustrate the result and performance

using DeepLocation to make a prediction on the dataset
from the S3. The dataset is processed in the pipeline and
information of every valid image has been saved in the meta-
data. The total amount of images used for prediction is
410400. The final accuracy is depicted in Figure 3. The
concrete accuracy is illustrated in Table 6.

The first part is how much improvement in geography hi-
erarchy. The hierarchy architecture carried out in the Sec-
tion 6.4 is generated from the different spatial resolutions.
Consequently, the prediction for the densest subdivision can
be refined by incorporating the knowledge of sparser repre-
sentations. The accuracy of each fineness of cells and the
hierarchy in the prediction of 35517 images are shown in
Table 7.

The percentages inside the table prove that the geogra-
phy hierarchy has improved the accuracy of prediction. The
sparse has the best in the range of continent because the
area of each cell is the largest and the scope of 2500 km can
be the most tolerant. While the dense has the best in the
range of street. It is turned out that the more serried par-
titioning has a higher precision in a rigorous range. When
the range gets small, every fineness of partitionings shows
lower accuracy. The accuracy of the sparse declines dras-
tically and the dense one goes down slowly. The hierarchy
can have the perfect combination of each partitioning and
give a tardy decline in ranges.

8. VISUALIZATION
This section will describe the idea of the visual design and

the process of developing a static website. First, considering
the needs of users, the visual design will be discussed. After
that, the process of developing the web application will be
displayed.

8.1 Design
The main goal of the visualization part is to predict the

position of the image and display the result and accuracy of
the model prediction. In order to provide users with intu-
itive results and a better user experience, the requirements
of the website are as follows:

• Select an image from given images

• Display the predicted location on the world map

• Compare the predicted location with the real location

• Show the distance between two locations

• Display the prediction accuracy of the model

7



Table 4: Result and Comparison of removal
Dataset Loss Continent(2500km) Country (750km) Region (200km) City(25km) Street (1km)
Removal 20.85% 33.9% 16.8% 6.4% 3.6% 1.3%
Original 20.87% 36.0% 17.2% 7.3% 3.8% 1.5%

Table 5: Result and Comparison of DeepLocation and PlaNet
Method Continent (2500km) Country (750km) Region (200km) City (25km) Street (1km)
PlaNet 43.5% 21.6% 7.6% 3.8% 0.4%

DeepLocation 35.3% 16.5% 6.8% 3.6% 1.3%

Table 6: Result of DeepLocation
Continent Country Region City Street

35.3% 16.5% 6.8% 3.6% 1.3%

Table 7: Accuracy of DeepLocation
Fineness Continent Country Region City Street
Sparse 35.2% 16.6% 6.3% 2.7% 0.3%

Medium 35.1% 16.2% 6.2% 3.0% 0.9%
Dense 34.5% 15.8% 6.1% 3.0% 1.1%

Hierarchy 35.0% 16.3% 6.4% 3.2% 1.2%

The website will randomly show 100 images from the
dataset (with 410402 images). Users can select any image
they want to predict or press the ‘choose random’ button to
select a random image. After pressing the ”Predicted Loca-
tion” button, a model marker with the longitude and lati-
tude information predicted by the model will be displayed
on the world map. Compared with the real position on the
ground, it can provide users with intuitive coordinate effects.
The user can clearly see two markers displayed on the map,
and the distance between the two markers will be displayed
below the map. In order to let users better understand the
effect of the model, the prediction accuracy will be displayed
on the web page, including the continent, country, region,
city, and street accuracy.

8.2 Static Web Application
To achieve the requirements of the design, the Bootstrap

framework was chosen to develop the website and the open-
source JavaScript library Leaflet2 was used for developing
the interactive map. By using the Leaflet library, it is easier
to zoom-in and zoom-out on the map, which can provide
a more dynamic and intuitional effect. We also use CSS
to statically decorate the HTML web page, including the
layout, fonts, and colors.

The usage of the web application can be seen in Figure 4
and Figure 5. Figure 5 shows the initial interface of the web-
site and Figure 6 is the result interface after the prediction
of an image.

9. CONCLUSION AND DISCUSSION
This section will state the conclusions from the result and

have a discussion on the project.
At first, we can know useful detail from the dataset, YFCC-

100M, and we give the well-processed metadata for future
development. After the processing with the metadata, there

2Leaflet: https://leafletjs.com

are 48.386% of the full dataset having geographical coordi-
nates. Besides, 0.047% of the images are lost in the multi-
media commons S3 bucket. We provide the absolute path
to access valid images in the S3 bucket. Then, it is a pity
that we cannot improve the performance and accuracy of the
model by person removal. However, if the strategy of filling
portraits with noise can be implemented more efficiently to
modify the images input when training the model, the re-
sult might be better. Next, from the website of DeepLoca-
tion, the visualization shows an intuitionistic presentation.
It contains the accuracy of five criteria, continent, region,
country, city, and street on the distance between the predic-
tion and its ground truth. Users can choose any one of the
images we offer randomly from the prediction dataset and
click the button to display the result on the interactive map.

Due to the difficulties we meet during the implementa-
tion process, we obtain plenty of useful views and insights
which will help us when doing similar work efficiently in
the future. A high proportion of images from YFCC100M
stored in Flickr are lost, so we tried to find a way to ac-
cess the images stored in the AWS S3 bucket which the loss
rate is far lower than Flickr. We successfully converted the
Flickr URL into the address of the S3 bucket so that we
could access the images as much as possible. Furthermore,
we convert all of the Flickr URL links in datasets into the
address of the AWS S3 bucket. We then use UDFs to make
sure that the paths to access the images in the S3 bucket
exist. Finally, we successfully stored the relevant data for
6 out of 10 datasets in 6 CSV files so that it may help the
incoming students taking the LSDE course to conveniently
access images. However, there are still some problems with
the images stored in AWS S3 Buckets. For instance, some
paths of images exist but the files are empty, or the size of
images is smaller than 1KB which means these certain im-
ages are still not useful. Indeed, this kind of data error may
occur in various conditions so that we must think carefully
and comprehensively when dealing with data afterward.

Moreover, we still think about the further work we could
do in the future. Firstly, there still be lots of ways to improve
our model’s performance, such as scene classification which
considers the conditions of environmental settings (e.g. in-
door, outdoor, natural, urban). Since we only use three
partitioning files for hierarchy prediction, the model may
perform better using more partitioning files for hierarchy
prediction work. Secondly, Tensorflow.js can be used to run
the pre-trained model in the browser. We believe that our
project and visualization website could be more comprehen-
sive by running our model in the browser. As a result, the
users not only can choose the images from our dataset but
also be able to upload their own photos for inferring.

8



Figure 4: The process of DeepLocation Web Application

Figure 5: The process of DeepLocation Web Application

9



10. REFERENCES
[1] Y. Avrithis, Y. Kalantidis, G. Tolias, and E. Spyrou.

Retrieving landmark and non-landmark images from
community photo collections. In Proceedings of the
18th ACM international conference on Multimedia,
pages 153–162, 2010.

[2] J. Hays and A. A. Efros. Im2gps: estimating
geographic information from a single image. In 2008
ieee conference on computer vision and pattern
recognition, pages 1–8. IEEE, 2008.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity
mappings in deep residual networks. In European
conference on computer vision, pages 630–645.
Springer, 2016.

[4] R. Lienhart. Stump-based 20x20 gentle adaboost
frontal face detector. Intel Corporation, 2000.

[5] C. Rother, V. Kolmogorov, and A. Blake. ” grabcut”
interactive foreground extraction using iterated graph
cuts. ACM transactions on graphics (TOG),
23(3):309–314, 2004.

[6] H. A. Rowley, S. Baluja, and T. Kanade. Neural
network-based face detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
20(1):23–38, 1998.

[7] G. Schindler, M. Brown, and R. Szeliski. City-scale
location recognition. In 2007 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–7.
IEEE, 2007.

[8] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde,
K. Ni, D. Poland, D. Borth, and L.-J. Li. Yfcc100m:
The new data in multimedia research.
Communications of the ACM, 59(2):64–73, 2016.

[9] T. Weyand, I. Kostrikov, and J. Philbin. Planet-photo
geolocation with convolutional neural networks. In
European Conference on Computer Vision, pages
37–55. Springer, 2016.

[10] A. R. Zamir and M. Shah. Image geo-localization
based on multiplenearest neighbor feature matching
usinggeneralized graphs. IEEE transactions on pattern
analysis and machine intelligence, 36(8):1546–1558,
2014.

[11] W. Zhang and C. Xiao. Pcan: 3d attention map
learning using contextual information for point cloud
based retrieval. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
12436–12445, 2019.

[12] Y.-T. Zheng, M. Zhao, Y. Song, H. Adam,
U. Buddemeier, A. Bissacco, F. Brucher, T.-S. Chua,
and H. Neven. Tour the world: building a web-scale
landmark recognition engine. In 2009 IEEE
Conference on Computer Vision and Pattern
Recognition, pages 1085–1092. IEEE, 2009.

APPENDIX
A. VISUALIZATION AND DATA STORED

DIRECTORY ON DBFS
• Visualization website

In the repository of lsde2020 group3

• 10 csv files with S3 Bucket address to access images
dbfs:/mnt/group03/dataset S3

Table 8: Contribution Overview 1: Report paper

Part Person Percentage

Abstract
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

100%
0%
0%

Introduction
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

100%
0%
0%

Related Work
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

100%
0%
0%

Method
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

15%
85%
0%

Result
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

0%
100%
0%

Visualization
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

0%
0%
100%

Conclusion and Discussion
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

65%
35%
0%

Latex
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

20%
60%
20%

Table 9: Contribution Overview 2: Codes

Part Person Percentage

Initial Data processing
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

30%
70%
0%

Training model
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

40%
60%
0%

Inference process
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

40%
60%
0%

Visualization
Chih-Chieh Lin
Haochen Wang
Kaixi Ma

5%
5%
90%

• 6 csv files with checking that ensures images exist
dbfs:/mnt/group03/dataset S3 exist

10


