

Basic Level Detection:

Learning from corpus characteristics and synthetic features

Haochen Wang (CS, VU & UvA Joint Degree)

Supervisor: Dr. Laura Hollink (HCDA, CWI) Dr. Adam S.Z. Belloum (UvA)

Centrum Wiskunde & Informatica

Outline

- Introduction
- Related work
- Methods & Evaluation
- Conclusion
- Future work

Introduction to Basic Level

Definition, applications, and goals

Definition

Basic Level

- Basic-level categories
- By Rosch et al. in 1976
- Cognitive economy: react quicker and more accurately with less efforts
- Cue validity

Chen, Yiwen, and Simone Teufel. "Synthetic Textual Features for the Large-Scale Detection of Basic-level Categories in English and Mandarin." *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*. 2021.

Applications

Using Basic Level for categorization helps:

- Knowledge organization systems (KOS)
- Semantic Web
- Improve user interface
- More benefits for:
 - Natural language processing
 - Computer vision

Goals - Research Questions

- Predict basic level concepts from corpus characteristics and synthetic features
- Synthetic features: structural + frequency + semantics
- Corpus size type(written/spoken) || audience(general/children)
- Semantic feature generation
 - Detect in WordNet

2.

Related Research

Rule, Machine learning, and Context-aware basic level

Rule-Based Heuristics

- Mills et al.: Rule-based system with heuristics
 - Rules + Boundaries
 - Accuracy: 77.0%
 - 152 concepts
 - Machine learning
 - □ 840 concepts
 - Accuracy: 89.9% (Cohen's kappa)

Chad Mills, Francis Bond, and Gina-Anne Levow. Automatic identification of basic-level categories. In Proceedings of the 9th Global Wordnet Conference, pages 298–305, 2018.

Machine Learning-Based Classification (1/3)

- HCDA: Predict in a concept hierarchy
 - Lexcical + structural + frequency features
 - Binary classification by Random Forest (best)
 - Hard for humans and the model
 - Semantic features: Word embeddings, Cues
 Implicit + explict

Hollink Laura, Aysenur Bilgin, and Jacco van Ossenbruggen. "Predicting the basic level in a hierarchy of concepts." Research Conference on Metadata and Semantics Research. Springer, Cham, 2020.

Machine Learning-Based Classification (2/3)

- Henry: Find useful corpus properties
 - Larger corpus, more reliable result
 - Spoken corpus to children
 - Significance of type and size
 - Wilcoxon rank-sum testSemantic features

Henry, N. "Learning the Basic Level from Text: Studying Different Corpus Characteristics in Predicting the Basic Level." University of Amsterdam, 2021, https://scripties.uba.uva.nl/search?id=722721. Accessed 2 Dec. 2021.

Machine Learning-Based Classification (3/3)

- Chen & Teufel: Synthetic features at scale
 - Semantics: Wikipedia pages, Distributional Memory, and BART(best)
 - Synthetics: Cue validity, Basic level page rank, Semantics
 - SVM
 - Accuracy: 75% (English), 80% (Mandarin)
 - □ Fine-tuned BART: cue generator
 - Cue validity: to extract semantic features

Chen Yiwen, and Simone Teufel. "Synthetic Textual Features for the Large-Scale Detection of Basic-level Categories in English and Mandarin." *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*. 2021.

Context-Aware Basic Level in Folksonomies

- Chen et al.: Detect the basic level among context from folksonomies
 - Large-scale web resources
 - Implicit semantics
 - Contextual category utility
 - WordNet: a hierarchy of concepts
 Lexical, structural, and frequency features

Wen-hao Chen, Yi Cai, Ho-fung Leung, and Qing Li. Context-aware basic level concepts detection in folksonomies. In International Conference on Web-Age Information Management, pages 632–643. 2010.

Methods & Evaluation

3.

Corpus characteristics, frequency, and semantic features Results and interpretations

Sub-Research Question One Improve from TYPE or AUDIENCE: Spoken better than written? Children better than general?

Corpus sampling - Setting Corpora Size

X	Written	Spoken
General	BNC	CABNC
Children	KBNC	CHILDES

Random Forest Models

- Local: Same domain & 10-fold CV
- Global: All domains & 10-fold CV
- Transfer: The other domain

	1M	2.4M 5.7M	100M
BNC	\checkmark		\checkmark
CHILDES	\checkmark		
CABNC	\checkmark		
КВИС			

I. Corpus sampling

Metrics: Cohen's kappa (kappa)

LocalModel:

GlobalModel:

TransferModel:

II. Wilcoxon Rank-sum Test on Size

Null hypothesis:

Results under the same model, the same corpus, but different two sizes are from the same distribution.

Alternative hypothesis

• Less

Bonferroni correction: $\alpha' = \frac{0.05}{m}$

Variables

- Discourse type: written or spoken
- Target audience: general or children
- Combination

II. Wilcoxon Rank-sum Test on Size

TransferModel: (metric: kappa, m=9, α' =0.006)

P-values (less)	Written	Spoken	General	Children
1M - 2.4M	0.000	0.129	0.001	0.99997
1M - 5.7M	0.000	0.246	0.000	1.0
1M - 100M	0.000		0.000	
2.4M - 5.7M	0.084	0.510	0.000	0.96235
2.4M - 100M	0.000		0.000	
5.7M - 100M	0.000		0.000	

- Limitation: KBNC(written children) only 1M
- Better with a larger corpus

III. Wilcoxon Rank-sum Test on Types

TransferModel (metric: kappa, m=3, α'=0.017)

P-values (greater)	1M	2.4M	5.7M
Written - Spoken	0.000	0.000	0.000
General - Children	1.000	0.029	0.000

- Written greater!
- General greater?
- Prove the limitation of KBNC 1M

Conclusions:

- Frequency from written general corpora
- Large size

Larger Corpus: Google Books Ngram

Written and general: printed

Enormous size: 1500 - 2019

Frequency search engine: Google Ngram Viewer

Optimal Crawler +21% speedup

I. Frequency as a feature - Google Ngram

Mean and maximal frequencies in the recent 1 year, 5, 10, 20, 50, 100, 200, 400, and 500 years.

GlobalModel:

LocalModel:

TransferModel:

I. Frequency features - Google Ngram

Conclusions:

- No dependency on time periods
- Mean or maximum
- Needs of a feature selection
- 50y and 100y for predictions in WordNet

II. Frequency Feature – Results

Best kappa

Карра	With Google Ngram	Baseline	Improvement	Growth rate
GlobalModel	0.714	0.673	0.041	+ 6.16%
LocalModel	0.712	0.640	0.072	+ 11.09%
TransferModel	0.590	0.521	0.069	+ 13.21%

Conclusions

- Much improvement due to General audience and Written
- Better than BNC due to **SIZE**

Sub-Research Question Two Improve from Semantics: Word embeddings Generated cues by BART

I. Word Embeddings – Word2vec

- Two ways to represent semantics
 - Vectors trained with SVM
 - Distance by vectors
- Pre-trained W2V: ConceptNet Numberbatch 19.08
- From words to vectors
 - 300 dimensions
 - Multiword concepts (e.g. ball-peen hammer): 63 removed

Robyn Speer, Joshua Chin, and Catherine Havasi (2017). "ConceptNet 5.5: An Open Multilingual Graph of General Knowledge." In proceedings of AAAI 2017.

I. Word Embeddings - Distance

Semantics extraction

- Lemma Distance: Cosine similarity
- Concept Distance: Hypernym lemmas ↔ Concept lemmas
- Mean, minimum, maximum, and standard deviation

Synset('wrench.n.03')

['wrench', 'spanner']

Synset('allen_wrench.n.01'

['Allen_wrench']

Synset('adjustable_wrench.n.01)

['adjustable_wrench', 'adjustable_spanner']

I. Word Embedding - Model Tests

Benchmark Model: Random Forest with SMOTE
Results

Карра	With Semantic Distance	Baseline	Improvement	Growth rate	
GlobalModel	0.713	0.673	0.040	+ 6.01%	
LocalModel	0.648	0.640	0.008	+ 1.23%	
TransferModel	0.531	0.521	0.010	+ 2.06%	

II. Semantic Feature Generation (1/3)

Motivation

- English semantic features: properties, categories, attributes
- Machine translation: Seq-to-Seq
- BART: Pre-trained model from a denoising autoencoder

Indicator

- \circ Textual \rightarrow numerical
- Cue validity

Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension." arXiv preprint arXiv:1910.13461 (2019).

II. Semantic Feature Generation (2/3)

- Fine-tuned model
 - Training data: a database of 4436 concepts
 - E.g. 'abandon' : [desert, give up, leave, withdraw]
 - (abandon, desert), (abandon, give up) ...
 - Method pipeline:
 - Tokenization
 - Fine-tuning
 - Generating

Buchanan, Erin M., Kathrene D. Valentine, and Nicholas P. Maxwell. "English semantic feature production norms: An extended database of 4436 concepts." Behavior Research Methods 51.4 (2019): 1849-1863.

II. Semantic Feature Generation (3/3)

Feature Transform • Statistics # cues **Cue Validity** 0

CV(concept) =

 $P(BL|cue) = \sum_{cue} rac{P(BL \wedge cue)}{P(cue)}$ $cue \in semantics(concept)$

Rosch, Eleanor, et al. "Basic objects in natural categories." Cognitive psychology 8.3 (1976): 382-439.

II. Semantic Feature Generation : Model Tests

Benchmark Model: Random Forest with SMOTE

Results

Карра	With Generated Cues	Baseline	Improvement	Growth rate	>
GlobalModel	0.881	0.673	0.208	+ 30.91%	
LocalModel	0.898	0.640	0.258	+ 40.31%	
TransferModel	0.705	0.521	0.184	+ 35.32%	

Sub-research Question Three

Detect the basic level: under Synset("entity.n.01") in WordNet MIK.

Pipeline: Extract the synthetic features

Structural features

- # direct hypernyms
- # total hyponyms
- normalized # part-whole
- normalized depth
- normalized gloss length
- shortest lemma length
- # lemmas
- maximal olysemies

Frequency features

- Written
- To general audience
- Google Ngram
- 50-year
- 100-year

Semantic features

- Generate cues
- Calculate the cue validity

Random Forest with SMOTE

Comparison

Results (74,374 concepts)

Prediction	Basic level	Agreement	Agreement	
Hollink et al.	9,819	7 0 7 1		
Ours	9,085	7,872	0 500	
Niamh Henry	15,401		8,588	

Conclusion

Answer the research questions

Conclusion

SQ1: To what extent the discourse type and target audience of a corpus considering its size would affect the performance of predicting the basic level?
 Written, General corpora with a large size

- SQ2: What new features concerning semantics can be generated to help improve the performance of predicting the basic level?
- Distance-based features from word embeddings
- Cue validity from cues by the fine-tuned BART

Conclusion

SQ3: How much would corpus characteristics and synthetic features improve basic level detection in a large-scale hierarchy?

Good sensitivity

No gold standard yet

5.

Future Work

Future Work

Predicting • Multi-class Basic level + superordinate + subordinate • Quantified regression Score: probability Generalization 0 Assemble learning

THANKS! Basic Level Detection

Any questions?

Haochen Wang (CS, VU & UvA Joint Degree)

Centrum Wiskunde & Informatica