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Abstract. With the development of information technology, we have
come from the era of information scarcity to the era of information over-
load. It becomes difficult for users to quickly obtain useful knowledge
from the massive amount of information. Therefore, in the hospitality
industry, it is crucial for online travel agencies to optimize hotel query
results to incentivize customers to make a purchase. In this assignment,
we aim to build ranked hotel recommendations for users that are search-
ing for a hotel to book.
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1 Introduction

Expedia [1] is one of the largest online travel companies that offer services in-
cluding accommodation reservation, ticketing, and travel management. The on-
line travel market is intensely competitive and crowded with an abundance of
disparate agencies providing analogous products. Recommending personalized
products is of vital importance in order to stand out from these competitors.
The hotel recommendation system aims to model and provide a ranked list of
hotels to predict the preference of users according to their query parameters. In
this assignment, our task is to make ranked predictions of hotels that users are
most likely to click on based on their particular search queries in the datasets
offered by Expedia. We have tried multiple techniques to try to achieve the opti-
mal solution. We first investigate the relevant researches to get a better business
understanding. Then we conduct exploratory data analysis and data preprocess-
ing, after which we engineer features. In the end, we build the model and fit the
result. This report is structured in the order mentioned above.

2 Related Work

Zhang et al. [7] who attended the ICDM Challenge 2013, conducted some fea-
ture engineering work, including missing value imputation with statistical val-
ues, designing composite features, and balancing training data. They trained
a combination of several models including Boosting Trees, Logistic Regression,
SVMRank, and Random Forests to improve the performance. In their work,
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they found that the price, rating, and location-related features are more impor-
tant than other features. Besides, the listwise ensemble method, which combines
each model’s output, achieves the highest-ranking score of 0.53249 with z-score
normalization being applied.

Another different approach was performed by Owen Zhang [9], who won the
first place in the ICDM Challenge 2013. When handling missing values, he just
imputed with negative values with the assumption that the missing itself has
meanings. In the preprocessing stage, he also down-sampled negative instances,
which causes the unbalancedness of the dataset. He proposed five groups of
features, where the EXP features and estimated position features are novel and
different from other participants in the competition. Owen chose an ensemble of
gradient boosting machines as the ranking model and implemented two models
with and without EXP features respectively.

3 Data understanding

3.1 Data Statistics

The datasets we use in this assignment are offered by Expedia. The training
set contains 54 features and the test set carries 50 features, without ’position’,
‘booking bool’, ‘click bool’, and ‘gross booking usd’, which are available in the
training dataset. Each instance in the dataset contains information about the
user, the search performed by the user, and one of all hotels belonging to this
search. One query can have multiple records and one record correspond to one
search.

About 44.7%percent of the training data and 46.3% percent of the test set is
missing. Thus we group the attributes into five categories as Table 1 for further
exploratory data analysis. From figure 1 we can see that there are around 29
attributes having more than 30% missing values. Among these attributes, a
large quantity of competitor-related values is missing. We will conduct further
analysis and process in the Section 3.2 and Section 4.1. In addition, only 4.47%
of the hotels are clicked together with 2.28% of which getting booked and most
users are from the same country which suggests that there may be a correlation
between booking and clicking(verified in Figure 2). Also, one possible reason for
this low conversion rate is that the training set might be imbalanced.

Table 1. Features exploration

Category Attribute

User information ’vistor ’ related features, srch id, site id

Search criteria
’srch ’ related features, orig destination distance,
random bool

Hotel information ’prop ’ related features, promotion flag, price usd

Reservation information click bool, booking bool, gross bookings usd

Competitor information ’compX ’ related features
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Fig. 1. Proportion of non-missing values for every attrubute.

To get a better understanding of different attributes, we performed a correla-
tion analysis. In the figure 2, we discover that the historical mean price per night
of the hotel the users have previously purchased has a positive association with
the mean star rating of hotels they purchased before. It reveals the correlations
among search attributes. A negative relationship between stays that includes
Saturday night and the number of nights stayed suggests that the weekend trip
is usually short. We also notice there are correlations between the star rating of
the hotel and the mean customer review score as well as the desirability of its
location. We dive a bit deeper into the hotel and reservation attributes. Figure 3
suggests that four-star rated hotels get clicked on most but only account for 5%
of the hotel amount. Users who rate hotels one star are most discrete. Further-
more, We also notice that the promotion flag increases the possibility of users
clicking on the hotel which is coherent to daily life.

Regarding the reservation information attributes, we find a correlation be-
tween clicking and position. Figure 4 shows that the times of user clicking de-
crease as the hotel position on the search results page getting larger whether
it is random or not, hinting that users tend to click on the top results which
in line with user psychology. On the normal sorted result page, the higher the
hotel positions, the more likely users make the reservation. However, there seems
to be no relationship of booking with hotel positions when they are arranged
randomly.

3.2 Data Distributions

Missing Values We created a summary of the missing values in the train-
ing dataset and calculated their percentages in all records and booked records
respectively.

From the table, we can see that the percentages of prop location score2 in
all records are very different from the one in only booked records, therefore we
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Fig. 2. Correlation analysis of attributes Fig. 3. Hotel stars and clicking

Fig. 4. Relationship between book/click and position

perform the Exact Fisher’s exact test [8] to see if these two values are significantly
different. The p-value of Fisher’s exact test is less than 0.05, which means that
the missing percentage of prop location score2 is different between these two



Assignment 2 - Data Mining Techniques - Group18 5

Table 2. Missing values and corresponding percentages

Attributes All records Booked records

comp rate1 8 78.19% 77.15%
comp inv1 8 76.72% 75.23%
comp rate percent1 8 92.6% 91.6%
visitor hist starrating 94.920% 93.433%
visitor hist adr usd 94.898% 93.400%
prop review score 0.149% 0.084%
prop location score2 21.99% 10.459%
orig destination distance 32.426% 32.292%
srch query affinity score 93.599% 92.135%
gross bookings usd 97.209% 0.0%

populations, thus the missing attribute prop location score2 has some meaning
itself.

Although the gross bookings usd is highly related to the action of bool, it can
only be precisely calculated after booking and it is not available in the training
dataset, therefore it provides very limited meaning for the ranking.

The missing remaining attributes do not show the obvious relationship with
the booking action, which means the missing of these attributes has no meaning
itself and is missed randomly.

Outliers From the descriptive statistics of training data of each feature, we
found some strange features with large gaps between their quartiles. In order
to find out if the gap was caused by their skewed distributions or the outliers,
we created boxplots for these features respectively, which are shown in Fig. 5.
From the boxplots, we can see that the large gap of some features, such as
srch adults count, srch children count, is caused by their skewed distributions
and there are no significant outliers in these features.

According to the analysis of missing values above, the outliers detected
by boxplots in features visitor hist adr usd and prop location score2 might be
caused by the great number of missing values, and we should deal with these
two features when handling missing values.

As for outliers in the remaining features, we calculate the percentages of them
among the whole data. Considering that the outliers account for a large part of
the total data and hotel booking is a complicated decision scenario, which is
influenced by many factors and involves an extremely diverse population, it will
lose valuable information if we just exclude them during the data processing
stage.
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Fig. 5. Boxplots of features with strange distributions

Table 3. Percentages of outliers in all data

Features Percentages

orig destination distance 7.9%
srch length of stay 2.3%
srch booking window 9.8%

4 Data process

4.1 Missing values and Outliers

Missing values As discussed previously, there are a few numerical features
with huge missing values, thus it will be a tremendous waste of information in
the dataset if we just remove those instances. Besides, we also found that the
missing value itself of some features influences the booking decision and has
valuable information. The methods we adopted to handle missing values are
presented in Table 4.

From the previous investigation, we found that missing values of prop location score2
are related to the target value, booking bool, thus we should keep them missed
with the imputation of negative values, which is out of its rational range. Con-
sidering that there is no significant hotel price difference between Expedia and
other competitors, we fill the missing values of all the competitor variables with
zero, which is neutral and provides convenience for our feature engineering later
on.

As for the orig destination distance, we first fill in the missing values from
other records with the same visitor location country id and same prop country id,
and impute the remaining with a median of all data, since the distribution of
orig destination distance is right-skewed and median can reduce the impact of
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larger values and outliers. Distributions of prop review score and visitor hist adr usd
are also skewed, thus we use the median to replace missing values, while distribu-
tions of srch query affinity score and visitor hist starrating are almost normal,
therefore we replace with mean values, which carries more information about
the distribution. The gross bookings usd is not available in the testing dataset
and might include noise when training, thus we remove it from the dataset.

Table 4. Handling Missing values

Attributes Method

prop location score2 Replace with negative values
comp rate1 8 Replace 0
comp inv1 8 Replace 0
comp rate percent1 8 Replace 0
orig destination distance Replace with matching and median
prop review score Replace with median
visitor hist adr usd Replace with median
srch query affinity score Replace with mean
visitor hist starrating Replace with mean
gross bookings usd Remove

Outliers From the discussion in section3.2, just excluding outliers will lose valu-
able information, thus we only decrease the weights(to-do:add-ref) of instances
with outliers to reduce the impact of outliers. We set lower weights to instances
with outliers when feeding data to our ranking model in the training process.

4.2 Feature Engineering

To help the model to find latent patterns among different features, we design
several kinds of features. First of all, we aggregated some features to obtain
the overall information of that feature and utilize the difference between an
overall distribution and one certain instance. For example, we calculated aggre-
gated prop review score by computing the mean value of prop review score with
each search to provide the distribution information of that feature. Meanwhile,
we also created features with order information. such as the price rank, which
expresses the position of that price in the hotel queue. Besides, we designed some
composite features, where multiple features are combined to extract the inter-
action among them, such as the price diff and rating diff. Finally, we created 24
new features and removed three features, resulting in 75 features in total, the
methods of calculating some features are shown in Table 5.

Some features are normalized to reduce the scale of data and build a ro-
bust model. Firstly, we perform log function on price usd to decrease the large
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scale of that feature. Besides, we perform the normalization with the mean
value and standard deviation on some features within the same srch id, such
as prop starrating and price usd. The label (i.e. target value) of instances was
set to be one if either the click bool or booking bool is true since the click action
is highly related to the booking decision and large difference between click and
booking will bring the noise to the ranking model.

Table 5. Part of Feature Engineering

Features Method

aggregated price usd The mean price usd of each hotel
aggregated dest price usd The mean price usd of each srch destination id
aggregated prop review score The mean prop review score of each search
weekday The weekday of the date when search was performed
week of year The week number within the year
early night If the search was performed very early of that day
price rank The price rank of this hotel within one search
star rank The starrating rank of this hotel within one search
price diff price usd - visitor hist adr usd
rating diff prop starrating - visitor hist starrating
target 0 if click bool 1 and booking bool is 2

4.3 Feature Selection

In order to filter out important features and prevent our model from overfit-
ting, we utilized the feature importance function provided by LGBMRanker to
measure the importance of all the features. After obtaining all the importance
information, we calculated the quartile of the importance data and we removed
those features, whose importance score is below the first quartile. After the se-
lection, we only have 55 features remained and their importance scores are all
greater than 15.

5 Model

5.1 Algorithm

LearningToRank(LTR) algorithm is employed in our project, which is one
algorithm of Boosting in ranking tasks, or recommendation systems. We try to
implement various types of Boosting using LightGBM. LightGBM is a gradi-
ent boosting framework that uses tree-based learning algorithms [2]. In detail,
LambdaMART is one of the most common pairwise algorithms. From the
name, it obviously consists of two parts, one is Lambda(gradient), the other is
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MART(Multiple Additive Regression Tree). Essentially, MART is GBDT with
gradient addition under the idea of Boosting [6].

Lambda stands for LambdaRank. It is a gradient instructing the orientation
and intensity of optimization for the next iteration. The derivation has been
raised by Burges, and we can have the value λ in Equation 1 [4]. Where i and
j are the two hotels, s is the value given by the model. ∆Zij is the indicator
of evaluation, in our project is NDCG, which will be discussed in Section 5.3.
Therefore, the optimization is not to first define the loss function but to directly
define the gradient according to the meaning of ranking. Furthermore, we can
derive the loss function in Equation 2.

λij = − 1

1 + exp(si − sj)
· |∆Zij | (1)

Lij = log{1 + exp(si − sj)} · |∆Zij | (2)

The LambdaMART model consists of many decision trees integrated by
boosting. The optimization goal of every tree is the gradient of the loss function,
Equation 2, using Lambda method, Equation 1.

For building Decision Trees, LambdaMART uses the simple least square
method. The least-square error, LSE is the indicator to break the current leaf
and generate new leaves. The LSE of Lambda of the two leaves is calculated as
the cost. And further one best dividing node can be discovered with the lowest
cost. Then, one ideal Decision Tree containing L leaves is generated.

Last part of the model, for the generated Decision Tree, we calculate the value
of each leaves using Newton Step. The value is right the number of hotels which
is fitted for the condition. Then, the model will be updated with the Decision
Tree. The learning rate also is the parameter of regularization.

5.2 Parameters Setting

In this subsection, the final model and its parameters in training will be dis-
cussed. The tuning and choosing of the final parameters will also be clarified.

The pipeline of the final model is shown in Figure 6. After handling missing
data and outliers, we do feature engineering to aggregate and add some features.
When preparing data to train and test, we first split the training set and the
validating set. We do the same pre-processing on the testing set. Then the pro-
cessed data is sent to the LGBMRanker. To keep track of building model and
shrink the memory, we save the model during training. Last, we use it to predict
and sort by score.

LGBMRanker has many parameters to build a suitable model. Through that,
we focus on the following key parameters shown in Table 6. Some of them should
be fixed specifically for the reason of our algorithm and basic setting. Inspired
by the grid search [3], we try to build models under every combination and find
out the best one.

The parameters which should be tuned are shown in the Table 7 together
with their candidate values. Here boosting type is ’dart’(Dropouts meet Multiple
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Fig. 6. Pipeline of the final model

Table 6. Parameters choosing

Parameter Descreption Value

boosting type Type of boosting method in training ’dart’
num leaves Maximum tree leaves for base learners 32
max depth Maximum tree depth for base learners 5
learning rate Boosting learning rate 0.12
n estimators Number of boosted trees to fit 1500
label gain Relevant gain for labels [0, 1, 5]
objective Specify the learning task ’lambdarank’
random state Random number seed 47
eval metric Customize evaluation metric ’ndcg’
eval at Evaluation positions of the specified metric 5
categorical feature Categorical features 8 features

Additive Regression Trees) for our algorithm, we also deploy ’gbdt’(traditional
Gradient Boosting Decision Tree) which is the default method as a reference
or benchmark. The candidates in the categorical feature are the number of fea-
tures adopted. With several times attempts, under the validation of 8 folds by
NDGC@5, the best combination considering score and time is illustrated in
Table 7. We finally decide to adopt the setting of the parameters in Table 6.
Note that: the categorical features are [’dayofweek’, ’month’, ’prop country id’,
’site id’, ’srch id’, ’prop id’, ’visitor location country id’, ’prop country id’]

5.3 Evaluation

In this subsection, we will describe the evaluation metric, the validation setting,
and the evaluation of our final model compared to some models during tuning
parameters.
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Table 7. Tuning parameters

Parameter Candidates Ideal value

boosting type [’dart’, ’gbdt’] ’gbdt’
num leaves [16, 32] 32
max depth [5, 10] 5
learning rate [0.10, 0.12, 0.15, 0.18] 0.12
n estimators [1000, 1500, 2000, 3000, 5000] 1500
categorical feature [[6],[7],[8],[9]] 8 features

Metric As mentioned before, the competition requires the metric of NDGC@5.
NDGC, Normalized Discounted Cumulative Gain, is used to evaluate the algo-
rithm of searching or ranking. The derivation of NDGC and validity on LTR task
have been discussed in [5]. We simply explain how NDCG calculates in Equation
3, 4, and 5. Where k is the assigned position in our task is 5, r is the relevancy
on the k, R is the descending rank of relevancy, and taking the first k sets.

DCGk =

k∑
i=1

2ri − 1

log2(i+ 1)
(3)

IDCGk =

|R|∑
i=1

2ri − 1

log2(i+ 1)
(4)

NDCGk =
DCGk

IDCGk
(5)

NDCG has outstanding characters, the high relevancy results have more in-
fluence on the score. And the score will increase when they lie in the front of
the rank. This metric is based on query and position. Based on the query, even
the worst hotel ranking of one query by a user, it will not heavily influence the
evaluation procedure as a whole. The reason is that every pair of user query-
hotels contributes the same to the average. Based on position, NDCG explicitly
uses the information of the position in the ranking list. The side-effect is NDCG
metric is discrete.

Validation For the validation setting, we try two ways of splitting the train-
ing set into 8 folds. That is 87.5% of the dataset for training and 12.5% for
validating. The first way is splitting in a random state, while the other is in
the sequence of 12.5%. After validating with both ways, we realize that random
sampling is not applicable in the ranking task. Under the same configuration
and setting, the NDCG@5 of random splitting on the testing set is only 0.35246,
while the score of sequential splitting can reach 0.39900. Therefore, we decide to
use 12.5% sequential records of the training set as validating set and the others
are trained the model.

During tuning the model, we get many results with different parameter com-
binations. Here, we only show the final ideal parameter setting of the model and
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the benchmark model using the traditional Gradient Boosting Decision Tree. The
tasks all run in Google Colab. The results are shown in Table 8. The benchmark
is the best score, for the random state of generating Decision Trees. The worst
validating score of the benchmark is 0.25044. We can know that the benchmark
model may be a little overfit. The final model on validating set can be 0.42103,
during training it fluctuates around 0.42, however, the score only is 0.40283
testing the output on Kaggle.

And the training procedure is time-consuming. Actually, when processing the
data including feature engineering, it needs about 20 minutes to finish, Although
the benchmark trains for less time, the overfitting seems much heavier.

Table 8. Model evaluation

Model Validating NDCG@5 Training time Testing NDCG@5

Final model 0.42103 192min 0.40283
Benchmark 0.49692 56min 0.26869

6 Conclusion

To conclude, we build the pipeline of a recommendation system for hotel data
by Expedia. Using LGBMRanker as the core model, we can predict hotels which
the users may most probably click into. The main challenge is still missing values
of many features, which is usually in actual experience. We can release this by
pre-processing and feature engineering.

From the Kaggle competition, we learned more structural data mining meth-
ods. Especially, we gain practical acknowledgment of the recommendation system
and some different algorithms with implementation. We also start to know the
metrics evaluating a ranking model, like NDCG. Through the training, we real-
ize that feature engineering is a very important part of data mining. Therefore,
it is vital to do exploratory data analysis. Aggregating features can improve the
quality of the data. Facing the problem of low scores, we can add more features
according to the inner logic of the data itself.

Finally, we find it really efficient to report individual progress during the
project and necessary to have a meeting every three days. We can exchange our
problems and make a group decision on our strategy, which is really helpful for
the improvement. We can have a division of tasks for members sequentially and
conquer the work individually, then merge into the whole. We regard it as a good
developing method.
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